梅州市重点中学2023届高三六校第一次联考数学试卷含解析.doc
《梅州市重点中学2023届高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《梅州市重点中学2023届高三六校第一次联考数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为( )ABCD2博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾某嘉宾突发奇想,
2、设计两种乘车方案方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )AP1P2BP1P2CP1+P2DP1P23已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度4从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )ABCD5某几何体的三视图如图所示,则该几何体的体积为( )ABCD6设命题函数在
3、上递增,命题在中,下列为真命题的是( )ABCD7已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()ABCD8一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( )ABCD9一个几何体的三视图如图所示,则该几何体的体积为( )ABCD10已知实数x,y满足,则的最小值等于( )ABCD11已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为( )ABCD12已知双曲线的一条渐近线方程为,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则( )A9B5
4、C2或9D1或5二、填空题:本题共4小题,每小题5分,共20分。13如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为_.14给出下列等式:,请从中归纳出第个等式:_.15甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“”表示猜测某人获奖,“”表示猜测某人未获奖,而“”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_.甲获奖乙获奖丙获奖丁获奖甲的猜测乙的猜测丙的猜测丁的猜测16已知正方体棱长为2,点是上底面内一动点,若三棱锥的外接球表面积恰为,则此时点构成的图形面积为_.三、解
5、答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立月总成本与月产量之间的回归方程;通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:参考数据:,.参考公式:相关系数,.18(12分)在平
6、面直角坐标系中,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程19(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.20(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数)(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长21(12分)某地为改善旅游环境进行景点改造如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且
7、交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1(百米),且F恰在B的正对岸(即BFl3)(1)在图中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(EPF)最大?请在(1)的坐标系中,写出观测点P的坐标22(10分)在中,内角的对边分别是,满足条件(1)求角;(2)若边上的高为,求的长参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】不妨设在第一象限,故,根据得到,解得答案.【详解】不妨设在第一象限,故,即,即,解得,(舍去).故选:.
8、【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力.2、C【解析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.【详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1;方案二坐车可能:312、321,所以,P1;所以P1+P2故选C.【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.3、C【解析】依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【详解】解:由已知得,是的一条对称轴,且使取得最值,则,故选:C.【点睛】本题考查三角函数的性质以
9、及三角函数的变换规则,属于基础题.4、A【解析】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.5、D【解析】结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 梅州市 重点中学 2023 届高三六校 第一次 联考 数学试卷 解析
限制150内