江苏南京宁海中学2022-2023学年高考数学一模试卷含解析.doc





《江苏南京宁海中学2022-2023学年高考数学一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏南京宁海中学2022-2023学年高考数学一模试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则ABCD2已知函数,其中表示不超过的最大正整数,则下列结论正确的是( )A的值域是B是奇函数C是周期函数D是增函数3函数的图象大致是()ABCD4某几何体的三视图如图所示,若图中
2、小正方形的边长均为1,则该几何体的体积是ABCD5设等差数列的前n项和为,若,则( )ABC7D26已知,则p是q的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件7已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )ABCD8设全集,集合,则( )ABCD9已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是ABCD10如图,已知平面,、是直线上的两点,、是平面内的两点,且,是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是( )ABCD11函数的定义域为()A,3)(3,+) B(-,3)(3,+
3、)C,+) D(3,+)12如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知是定义在上的偶函数,其导函数为若时,则不等式的解集是_14若,则_15已知函数,若方程的解为,(),则_;_16设为锐角,若,则的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥中,侧面为等腰直角三角形,平面(1)求证:平面;(2)求直线与平面所成的角的正弦值18(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)
4、的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)19(12分)设函数.()当时,求不等式的解集;()若函数 的图象与直线所围成的四边形面积大于20,求的取值范围.20(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.21(12分)已知,其中(1)当时,设函数,求函数的极值(2)若函数在区间上递增,求的取值范围;(3)证明:22(10分)如图,已知正方形所在
5、平面与梯形所在平面垂直,BMAN,(1)证明:平面;(2)求点N到平面CDM的距离参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:根据集合可直接求解.详解:,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.2、C【解析】根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为
6、选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.3、C【解析】根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】,函数为奇函数,排除选项A,B;又当时,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.4、B【解析】该几何体是直三棱柱和半圆锥的组合体,其中三棱柱的高为2,底面是高和底边均为4的等腰三角形,圆锥的高为4,底面
7、半径为2,则其体积为,.故选B点睛:由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5、B【解析】根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果【详解】因为,所以,所以,所以,故选:B【点睛】本题主要考查等差数列的性质及前项和公式,属于基础题6、B【解析】根据诱导公式化简再分析即可.【详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公
8、式的运用,属于基础题.7、D【解析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,是增函数;当时,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,是增函数;当时,是减函数.因此.设,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.
9、因为,所以,代入,得.设,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题8、B【解析】可解出集合,然后进行补集、交集的运算即可【详解】,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.9、A【解析】根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【详解】 为定义在上的偶函数,图象关于轴对称又在上是增函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏南京 宁海 中学 2022 2023 学年 高考 数学 试卷 解析

限制150内