江苏溧阳市(溧阳中学2023届高考考前模拟数学试题含解析.doc
《江苏溧阳市(溧阳中学2023届高考考前模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏溧阳市(溧阳中学2023届高考考前模拟数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知向量,且与的夹角为,则x=( )A-2B2C1D-12如图,在棱长为4的正方体中,E,F,G分别为棱 AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EF
2、G,则的最小值为( )ABCD3已知函数,以下结论正确的个数为( )当时,函数的图象的对称中心为;当时,函数在上为单调递减函数;若函数在上不单调,则;当时,在上的最大值为1A1B2C3D44函数的图象可能为( )ABCD5我国古代数学著作九章算术有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:,)ABCD6在中,角所对的边分别为,已知,
3、当变化时,若存在最大值,则正数的取值范围为ABCD7已知函数,则函数的零点所在区间为( )ABCD8已知定义在上的函数满足,且当时,则方程的最小实根的值为( )ABCD9已知等比数列满足,则( )ABCD10已知,则的大小关系为( )ABCD11设集合,集合 ,则 =( )ABCDR12已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是( )ABCD1二、填空题:本题共4小题,每小题5分,共20分。13三棱柱中, ,侧棱底面,且三棱柱的侧面积为.若该三棱柱的顶点都在同一个球的表面上,则球的表面积的最小值为_14有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了
4、四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是_15函数的定义域是_16执行右边的程序框图,输出的的值为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-4:坐标系与参数方程已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别为和,直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.18(12分)已知.(1)求不等式的解集;(2)记
5、的最小值为,且正实数满足.证明:.19(12分)在平面直角坐标系中,直线的参数方程为(为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)若点在直线上,求直线的极坐标方程;(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.20(12分)已知点,且,满足条件的点的轨迹为曲线(1)求曲线的方程;(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由21(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.22(10分)如图,在四棱锥中,底面为
6、正方形,、分别为、的中点(1)求证:平面;(2)求直线与平面所成角的正弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.2、C【解析】把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值【详解】如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,正方体中平面,从而
7、有,在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,显然关于直线的对称点为,当且仅当共线时取等号,所求最小值为故选:C【点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值3、C【解析】逐一分析选项,根据函数的对称中心判断;利用导数判断函数的单调性;先求函数的导数,若满足条件,则极值点必在区间;利用导数求函数在给定区间的最值.【详解】为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确由题意知因为当时,又,所以在上恒成立,所以函数在上为单调递减函数,正确由题意知,
8、当时,此时在上为增函数,不合题意,故令,解得因为在上不单调,所以在上有解,需,解得,正确令,得根据函数的单调性,在上的最大值只可能为或因为,所以最大值为64,结论错误故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.4、C【解析】先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.5、C【解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出【详解】由题意可得莞草与蒲草第n天的长度分别为 据题意得:
9、, 解得2n12, n21故选:C【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题6、C【解析】因为,所以根据正弦定理可得,所以,所以,其中,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C7、A【解析】首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 溧阳市 溧阳 中学 2023 高考 考前 模拟 数学试题 解析
限制150内