梅州市重点中学2023年高考仿真模拟数学试卷含解析.doc
《梅州市重点中学2023年高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《梅州市重点中学2023年高考仿真模拟数学试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数()的图像可以是( )ABCD2已知公差不为0的等差数列的前项的和为,且成等比数列,则( )A56B72C88D403设复数满足为虚数单位),则( )ABCD4若函数()的图象过点,则(
2、 )A函数的值域是B点是的一个对称中心C函数的最小正周期是D直线是的一条对称轴5已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是( )ABCD6已知函数的定义域为,则函数的定义域为( )ABCD7如图,在中, ,是上的一点,若,则实数的值为( )ABCD8已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是( )ABCD9已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是ABCD10如图所示的程序框图输出的是126,则应为( )ABCD11如图,内接于圆,是圆的直径,则三棱锥体积的最大值为( )ABCD12已知正方体的棱长为2,
3、点在线段上,且,平面经过点,则正方体被平面截得的截面面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为_.14设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为_.15已知“在中,”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则_16已知函数的部分图象如图所示,则的值为_. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端某种
4、植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望18(12分)已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.19(12分)已知数列,其前项和为,满足,其中,.若,(),
5、求证:数列是等比数列;若数列是等比数列,求,的值;若,且,求证:数列是等差数列.20(12分)某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数
6、据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.表1:一级滤芯更换频数分布表一级滤芯更换的个数89频数6040图2:二级滤芯更换频数条形图 以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;(2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.
7、若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.21(12分)已知函数,它的导函数为(1)当时,求的零点;(2)当时,证明:22(10分)已知各项均为正数的数列的前项和为,且,(,且)(1)求数列的通项公式;(2)证明:当时,参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【详解】由题可知:,所以当时,又,令,则令,则所以函数在单调递减在单调递增,故选:B【点睛】本题考查函数的图像,可从以下指标进行观察:(1)定义域;(
8、2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.2、B【解析】,将代入,求得公差d,再利用等差数列的前n项和公式计算即可.【详解】由已知,故,解得或(舍),故,.故选:B.【点睛】本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题.3、B【解析】易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.4、A【解析】根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,故,对于A,由,则,故A正确;对于B,当时,故B
9、错误;对于C,故C错误;对于D,当时,故D错误;故选:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.5、B【解析】利用换元法设,则等价为有且只有一个实数根,分 三种情况进行讨论,结合函数的图象,求出的取值范围.【详解】解:设 ,则有且只有一个实数根.当 时,当 时, ,由即,解得,结合图象可知,此时当时,得 ,则 是唯一解,满足题意;当时,此时当时,此时函数有无数个零点,不符合题意;当 时,当 时,此时 最小值为 ,结合图象可知,要使得关于的方程有且只有一个实数根,此时 .综上所述: 或.故选:A.【点睛】本题考查了函数方程根的个数的应用.利用换
10、元法,数形结合是解决本题的关键.6、A【解析】试题分析:由题意,得,解得,故选A考点:函数的定义域7、B【解析】变形为,由得,转化在中,利用三点共线可得.【详解】解:依题: ,又三点共线,解得故选:【点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程: 三点共线 (为平面内任一点,)8、A【解析】结合已知可知,可求,进而可求,代入,结合,可求,即可判断【详解】图象上相邻两个极值点,满足,即,且,当时,为函数的一个
11、极小值点,而故选:【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用9、A【解析】根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【详解】 为定义在上的偶函数,图象关于轴对称又在上是增函数 在上是减函数 ,即对于恒成立 在上恒成立,即的取值范围为:本题正确选项:【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.10、B【解析】试题分析:分析程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 梅州市 重点中学 2023 年高 仿真 模拟 数学试卷 解析
限制150内