《江苏省宿迁2023年中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省宿迁2023年中考数学模拟预测题含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若代数式在实数范围内有意义,则x的取值范围是( )ABCD2如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A左、右两个几何体的主视图相同B左、右两个几何体
2、的左视图相同C左、右两个几何体的俯视图不相同D左、右两个几何体的三视图不相同3如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是ABCD4如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD5实数a在数轴上的位置如图所示,则化简后为()A7B7C2a15D无法确定6
3、下列各式中的变形,错误的是()ABCD7如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是 3 的倍数的概率为( )ABCD8函数y=中自变量x的取值范围是( )Ax-1且x1Bx-1Cx1D-1x19如图,直线ABCD,则下列结论正确的是()A1=2B3=4C1+3=180D3+4=18010九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )ABCD二、填空题(共7小题,每小题3分
4、,满分21分)11一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_米12在实数范围内分解因式: =_13一个多边形的每个内角都等于150,则这个多边形是_边形14如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_15方程=1的解是_16在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90的对应点的坐标为_17如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_.三、解答题(共7小题,满分69分)18(10分)如图1,在平面直角坐标
5、系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(1,0)(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PEy轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当BQE+DEQ=90时,求此时点P的坐标19(5分)如图,一艘轮船位于灯塔P的北偏东60方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段
6、时间后,到达位于灯塔P的南偏东45方向的B处,求此时轮船所在的B处与灯塔P的距离(参考数据:2.449,结果保留整数)20(8分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64,在斜坡上的点D处测得楼顶B的仰角为45,其中A、C、E在同一直线上求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin640.9,tan642)21(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为
7、3500元(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值22(10分)如图,一次函数yx+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒(1)点P在运动过程中,若某一时刻,OPA的面积为6,求此时P的坐标;(2)在整个运动过程中,当t为何值时,AOP为等腰三角形?(只需写出t的值,无需解答过程)23(12分)如图1,在菱形ABCD中,AB,tanABC2,
8、点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角(BCD),得到对应线段CF(1)求证:BEDF;(2)当t 秒时,DF的长度有最小值,最小值等于 ;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,EPQ是直角三角形?24(14分)先化简,再求值:1,其中a=2sin60tan45,b=1参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题解析:要使分式有意义,则1-x0,解得:x1故选D2、B【解析】直接利用已知几何体分别得出三视图进而分析得出答案【详解】A、左
9、、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键3、D【解析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.4、C【解析】根据图象起始位置猜想点B或F为起点,则可以判断正确,错误结合图象判断3t4图象
10、的对称性可以判断正确结合图象易得正确【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故正确;所有点中,只有点D到A距离为2个单位,故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势5、C【解析】根据数轴上点的位置判断出a4与a11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果【
11、详解】解:根据数轴上点的位置得:5a10,a40,a110,则原式|a4|a11|a4+a112a15,故选:C【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键6、D【解析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案【详解】A、,故A正确;B、分子、分母同时乘以1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、,故D错误;故选:D【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变7、C【解析】根据题意确定所有情况的数目,再
12、确定符合条件的数目,根据概率的计算公式即可【详解】解:由题意可知,共有4种情况,其中是 3 的倍数的有6和9,是 3 的倍数的概率,故答案为:C【点睛】本题考查了概率的计算,解题的关键是熟知概率的计算公式8、A【解析】分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分详解:根据题意得到:,解得x-1且x1,故选A点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数易错易混点:学生易对二次根式的非负性和分母不等于0混淆9、D
13、【解析】分析:依据ABCD,可得3+5=180,再根据5=4,即可得出3+4=180详解:如图,ABCD,3+5=180,又5=4,3+4=180,故选D点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补10、C【解析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,故选C考点:由实际问题抽象出分式方程二、填空题(共7小题,每小题3分,满分21分)11、1【解析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案【详解】如图所示:坡度i=1:0.75,AC:BC=1:0.75=4:3,设AC=4x,则BC=3x,AB=5x,AB=20m,5
14、x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m故答案为:1【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用表示坡角,可知坡度与坡角的关系是12、2(x+)(x-)【解析】先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解【详解】2x2-6=2(x2-3)=2(x+)(x-)故答案为2(x+)(x-)【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止13、1【解析】根据多边形
15、的内角和定理:180(n-2)求解即可【详解】由题意可得:180(n-2)=150n,解得n=1故多边形是1边形14、2【解析】延长AC交x轴于B根据光的反射原理,点B、B关于y轴对称,CB=CB路径长就是AB的长度结合A点坐标,运用勾股定理求解【详解】解:如图所示,延长AC交x轴于B则点B、B关于y轴对称,CB=CB作ADx轴于D点则AD=3,DB=3+1=1由勾股定理AB=2AC+CB = AC+CB= AB=2即光线从点A到点B经过的路径长为2考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键15、x=3【解析】去分母得:x
16、1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解16、(3,2)【解析】作出图形,然后写出点A的坐标即可【详解】解答:如图,点A的坐标为(-3,2)故答案为(-3,2)【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解17、xx75.【解析】试题解析:设长方形墙砖的长为x厘米,可得:xx75.三、解答题(共7小题,满分69分)18、(1)y=x2+2x+3;(2)d=t2+
17、4t3;(3)P(,)【解析】(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;(2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=2x+6,则E(t,2t+6),P(t,t2+2t+3),PH=t2+2t+3,EH=2t+6,再根据d=PHEH即可得答案;(3)首先,作DKOC于点K,作QMx轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ERDK于点R,记QE与DK的交点为
18、N,根据题意在(2)的条件下先证明DQTECH,再根据全等三角形的性质即可得ME=42(2t+6),QM= t1+(3t),即可求得答案【详解】解:(1)当x=0时,y=3,A(0,3)即OA=3,OA=OC,OC=3,C(3,0),抛物线y=ax2+bx+3经过点B(1,0),C(3,0),解得:,抛物线的解析式为:y=x2+2x+3;(2)如图1,延长PE交x轴于点H,y=x2+2x+3=(x1)2+4,D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得: ,解得:,y=2x+6,E(t,2t+6),P(t,t2+2t+3),PH=t2+2t+3,EH=
19、2t+6,d=PHEH=t2+2t+3(2t+6)=t2+4t3;(3)如图2,作DKOC于点K,作QMx轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ERDK于点R,记QE与DK的交点为N,D(1,4),B(1,0),C(3,0),BK=2,KC=2,DK垂直平分BC,BD=CD,BDK=CDK,BQE=QDE+DEQ,BQE+DEQ=90,QDE+DEQ+DEQ=90,即2CDK+2DEQ=90,CDK+DEQ=45,即RNE=45,ERDK,NER=45,MEQ=MQE=45,QM=ME,DQ=CE,DTQ=EHC、QDT=CEH,DQTECH,DT=EH,QT=CH,ME=4
20、2(2t+6),QM=MT+QT=MT+CH=t1+(3t),42(2t+6)=t1+(3t),解得:t=,P(,)【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.19、此时轮船所在的B处与灯塔P的距离是98海里【解析】【分析】过点P作PCAB,则在RtAPC中易得PC的长,再在直角BPC中求出PB的长即可【详解】作PCAB于C点,APC=30,BPC=45 ,AP=80(海里),在RtAPC中,cosAPC=,PC=PAcosAPC=40(海里),在RtPCB中,cosBPC=,PB=4098(海里),答:此时轮船所在的B处与灯塔P的距离是98海里【点睛】本题
21、考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.20、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度试题解析:(1)在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,设DE=5x米,则EC=12x米,(5x)2+(12x)2=132,解得:x=1,5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,
22、由题意可知BDH=45,BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,tan64=,2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米21、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg销售总利润最大为26650元【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg销售总利润为w元构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销
23、售利润分别为x元和y元由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200a)kg销售总利润为w元由题意w=100a+150(200a)=50a+30000,500,w随x的增大而减小,当a取最小值,w有最大值,200a2a,a,当a=67时,w最小=5067+30000=26650(元),此时20067=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg销售总利润最大为26650元点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函
24、数或方程解决问题22、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16【解析】(1)先求出OPA的面积为6时BP的长,再求出点P的坐标;(2)分别讨论AO=AP,AP=OP和AO=OP三种情况.【详解】(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,A(0,6),B(8,0),OA=6,OB=8,AB=10,AB边上的高为6810=,P点的运动时间为t,BP=t,则AP=,当AOP面积为6时,则有AP=6,即=6,解得t=7.5或12.5,过P作PEx轴,PFy轴,垂足分别为E、F,则PE=4.5或7.5,BE=6或10,则点P坐标为(8-6,4.5)或(8-
25、10,7.5),即(2,4.5)或(-2,7.5);(2)由题意可知BP=t,AP=,当AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况当AP=AO时,则有=6,解得t=4或16;当AP=OP时,过P作PMAO,垂足为M,如图1,则M为AO中点,故P为AB中点,此时t=5;当AO=OP时,过O作ONAB,垂足为N,过P作PHOB,垂足为H,如图2,则AN=AP=(10-t),PHAO,AOBPHB,=,即=,PH=t,又OAN+AON=OAN+PBH=90,AON=PBH,又ANO=PHB,ANOPHB,=,即=,解得t=;综上可知当t的值为、4、5和16时,AOP为等腰三角
26、形23、(1)见解析;(2)t(6+6),最小值等于12;(3)t6秒或6秒时,EPQ是直角三角形【解析】(1)由ECFBCD得DCFBCE,结合DCBC、CECF证DCFBCE即可得;(2)作BEDA交DA的延长线于E当点E运动至点E时,由DFBE知此时DF最小,求得BE、AE即可得答案;(3)EQP90时,由ECFBCD、BCDC、ECFC得BCPEQP90,根据ABCD6,tanABCtanADC2即可求得DE;EPQ90时,由菱形ABCD的对角线ACBD知EC与AC重合,可得DE6.【详解】(1)ECFBCD,即BCE+DCEDCF+DCE,DCFBCE,四边形ABCD是菱形,DCBC
27、,在DCF和BCE中,,DCFBCE(SAS),DFBE;(2)如图1,作BEDA交DA的延长线于E当点E运动至点E时,DFBE,此时DF最小,在RtABE中,AB6,tanABCtanBAE2,设AEx,则BE2x,ABx6,x6,则AE6DE6+6,DFBE12,时间t=6+6,故答案为:6+6,12;(3)CECF,CEQ90,当EQP90时,如图2,ECFBCD,BCDC,ECFC,CBDCEF,BPCEPQ,BCPEQP90,ABCD6,tanABCtanADC2,DE6,t6秒;当EPQ90时,如图2,菱形ABCD的对角线ACBD,EC与AC重合,DE6,t6秒,综上所述,t6秒或6秒时,EPQ是直角三角形【点睛】此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.24、【解析】对待求式的分子、分母进行因式分解,并将除法化为乘法可得-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.【详解】原式=-1=-1=,当a2sin60tan45=21=1,b=1时,原式=.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.
限制150内