江苏省奔牛高级中学2022-2023学年高三最后一卷数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《江苏省奔牛高级中学2022-2023学年高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省奔牛高级中学2022-2023学年高三最后一卷数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1圆心为且和轴相切的圆的方程是( )ABCD2南宋数学家杨辉在详解九章算法和算法通变本末中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:)A1624B1024C1198D15603若直线ykx1与圆x2y21相交于P、Q两点,且POQ120(其中O为坐标原点),则k的值为()A B C或D和4已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为( )
3、ABC0D5一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )ABCD6已知向量,则是的( )A充分不必要条件B必要不充分条件C既不充分也不必要条件D充要条件7为计算, 设计了如图所示的程序框图,则空白框中应填入( )ABCD8已知向量,(其中为实数),则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9已知向量,则向量在向量上的投影是( )ABCD10在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则( )A5BC4D1611已知的面积是, ,则( )A5B或1C5或1D12已
4、知是第二象限的角,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知命题:,那么是_.14已知函数,则曲线在点处的切线方程为_.15已知函数,在区间上随机取一个数,则使得0的概率为 16如图,在梯形中,分别是的中点,若,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知an是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1(I)求an的通项公式;()若数列bn满足:,求bn的前n项和18(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.19(12分)在中, 角,的对边分别为, 其中, .(1)求角
5、的值;(2)若,为边上的任意一点,求的最小值.20(12分)已知函数,其中.(1)函数在处的切线与直线垂直,求实数的值;(2)若函数在定义域上有两个极值点,且.求实数的取值范围;求证:.21(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科
6、线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.22(10分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查
7、圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.2、B【解析】根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,两两作差得:3,4,6,9,13,18,两两作差得:1,2,3,4,5,设该数列为,令,设的前项和为,又令,设的前项和为.易,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.3、C【解析】直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且POQ=12
8、0(其中O为原点),可以发现QOx的大小,求得结果【详解】如图,直线过定点(0,1),POQ=120OPQ=30,1=120,2=60,由对称性可知k=故选C【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题4、C【解析】先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C【点睛】此题考查的是两个向量的数量积的最小
9、值,利用了导数求解,考查了转化思想和运算能力,属于难题.5、B【解析】由三视图确定原几何体是正三棱柱,由此可求得体积【详解】由题意原几何体是正三棱柱,故选:B【点睛】本题考查三视图,考查棱柱的体积解题关键是由三视图不愿出原几何体6、A【解析】向量,则,即,或者-1,判断出即可【详解】解:向量,则,即,或者-1,所以是或者的充分不必要条件,故选:A【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.7、A【解析】根据程序框图输出的S的值即可得到空白框中应填入的内容【详解】由程序框图的运行,可得:S0,i0满足判断框内的条件,执行循环体,a1,S1,i1满足判断框内的条
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 高级中学 2022 2023 学年 最后 一卷 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内