《江苏省句容市第二中学2023届中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省句容市第二中学2023届中考数学考前最后一卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若关于x的一元二次方程x22x+m=0有两个不相等的实数根,则m的取值范围是()Am1Bm1Cm1Dm12某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)33.544.5人数1132A中位数是4,众数是4B中位数是3.
2、5,众数是4C平均数是3.5,众数是4D平均数是4,众数是3.53下列所述图形中,是轴对称图形但不是中心对称图形的是( )A线段B等边三角形C正方形D平行四边形4关于反比例函数y=,下列说法中错误的是()A它的图象是双曲线B它的图象在第一、三象限Cy的值随x的值增大而减小D若点(a,b)在它的图象上,则点(b,a)也在它的图象上5下列计算或化简正确的是()ABCD6计算tan30的值等于( )A B C D7计算的结果是( )ABCD28已知函数的图象与x轴有交点则的取值范围是( )Ak4Bk4Ck4且k3Dk4且k39如图,ABCD,DBBC,2=50,则1的度数是()A40B50C60D1
3、4010如图,将ABC 绕点C顺时针旋转,使点B落在AB边上点B处,此时,点A的对应点 A恰好落在 BC 边的延长线上,下列结论错误的是( )ABCB=ACABACB=2BCBCA=BACDBC 平分BBA二、填空题(共7小题,每小题3分,满分21分)11如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AG、CF下列结论:ABGAFG;BG=GC;AGCF;SFGC=1其中正确结论的是_12一个扇形的圆心角为120,弧长为2米,则此扇形的半径是_米13如图,把RtABC放在直角坐标系内,其中CAB=90,BC=5,点A,B
4、的坐标分别为(1,0),(4,0),将ABC沿x轴向左平移,当点C落在直线y=2x6上时,则点C沿x轴向左平移了_个单位长度14分解因式:ax2a=_15若分式有意义,则实数x的取值范围是_16如图,已知在RtABC中,ACB90,AB4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1S2等_17为了求1+2+22+23+22016+22017的值,可令S1+2+22+23+22016+22017,则2S2+22+23+24+22017+22018,因此2SS220181,所以1+22+23+22017220181请你仿照以上方法计算1+5+52+53+52017的值是_三、解答
5、题(共7小题,满分69分)18(10分)如图,是等腰三角形,.(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);(2)判断是否为等腰三角形,并说明理由.19(5分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?20(8分)某农户生产经销一种农产品,已知这种产品的成本
6、价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为W元(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?21(10分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等
7、(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?22(10分)雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:组别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放C炉烟气排放15%D其他(滥砍滥伐等)请根据统计图表回答下列问题:本次被调查的市
8、民共有多少人?并求和的值;请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.23(12分)解方程:3x22x2124(14分)如图,点A的坐标为(4,0),点B的坐标为(0,2),把点A绕点B顺时针旋转90得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得
9、QPO=OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据方程有两个不相等的实数根结合根的判别式即可得出=4-4m0,解之即可得出结论【详解】关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,=(-2)2-4m=4-4m0,解得:m1故选B【点睛】本题考查了根的判别式,熟练掌握“当0时,方程有两个不相等的两个实数根”是解题的关键2、A【解析】根据众数和中位数的概念求解【详解】这组数据中4出现的次数最多,众数为4,共有7个人,第4个人的劳动时间为中位数,所以中位数为4,故选A【点睛】本题
10、考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错3、B【解析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解【详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意故选:B【点睛】本题考
11、查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4、C【解析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答【详解】A反比例函数的图像是双曲线,正确;Bk=20,图象位于一、三象限,正确;C在每一象限内,y的值随x的增大而减小,错误;Dab=ba,若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确故选C【点睛】本题主要考查反比例函数的性质注意:反比例函数的增减性只指在同一象限内5、D【解析】解:A不是同类二次根式,不能合并,故A错误;B,故B错误;C,故C错
12、误;D,正确故选D6、C【解析】tan30= 故选C7、C【解析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.【详解】原式=32=3=.故选C.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.8、B【解析】试题分析:若此函数与x轴有交点,则,0,即4-4(k-3)0,解得:k4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.9、A【解析】试题分析:根据直角三角形两锐角互余求出3,再根据两直线平行,同位角相等解答解:DBBC,2=50,3=902=9050=40,ABCD,1=3=40故选A10、C【解析】根据旋转的性
13、质求解即可【详解】解:根据旋转的性质,A:与均为旋转角,故=,故A正确;B:,又,故B正确;D:,BC平分BBA,故D正确.无法得出C中结论,故答案:C.【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据翻折变换的性质和正方形的性质可证RtABGRtAFG;在直角ECG中,根据勾股定理可证BG=GC;通过证明AGB=AGF=GFC=GCF,由平行线的判定可得AGCF;由于SFGC=SGCE-SFEC,求得面积比较即可【详解】正确理由:AB=AD=AF,AG=AG,B=AFG=90,RtABGRtAFG(HL);正确理由
14、:EF=DE=CD=2,设BG=FG=x,则CG=6-x在直角ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1BG=1=6-1=GC;正确理由:CG=BG,BG=GF,CG=GF,FGC是等腰三角形,GFC=GCF又RtABGRtAFG;AGB=AGF,AGB+AGF=2AGB=180-FGC=GFC+GCF=2GFC=2GCF,AGB=AGF=GFC=GCF,AGCF;错误理由:SGCE=GCCE=14=6GF=1,EF=2,GFC和FCE等高,SGFC:SFCE=1:2,SGFC=6=1故不正确正确的个数有1个: .故答案为【点睛】本题综合性较强,考查了翻折变换的性质
15、和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度12、1【解析】根据弧长公式l,可得r,再将数据代入计算即可【详解】解:l,r1故答案为:1【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l(弧长为l,圆心角度数为n,圆的半径为r)13、1【解析】先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.【详解】解:在RtABC中,AB=1(1)=3,BC=5,AC=1,点C的坐标为(1,1)当y=2x6=1时,x=5,1(5)=1,点C沿x轴向左平移1个单位长度才能落在直线y=2x6上故答
16、案为1【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.14、【解析】先提公因式,再套用平方差公式.【详解】ax2a=a(x2-1)=故答案为:【点睛】掌握因式分解的一般方法:提公因式法,公式法.15、【解析】由于分式的分母不能为2,x-1在分母上,因此x-12,解得x解:分式有意义,x-12,即x1故答案为x1本题主要考查分式有意义的条件:分式有意义,分母不能为216、【解析】试题解析: 所以 故答案为17、【解析】根据上面的方法,可以令S=1+5+52+53+52017,则5S=5+52+53+52012+5
17、2018,再相减算出S的值即可.【详解】解:令S1+5+52+53+52017,则5S5+52+53+52012+52018,5SS1+52018,4S520181,则S,故答案为:【点睛】此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S来达到抵消的目的.三、解答题(共7小题,满分69分)18、(1)作图见解析 (2)为等腰三角形【解析】(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.
18、(2)分别求出的三个角,看是否有两个角相等,进而判断是否为等腰三角形.【详解】(1)具体如下:(2)在等腰中,BD为ABC的平分线,故,那么在中,是否为等腰三角形.【点睛】本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.19、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验
19、后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用工作时间+乙队每天所需费用工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5145,解得:m10,答:至少安排甲队工作10天【点睛】本题考
20、查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式20、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.【解析】(1)直接利用每件利润销量=总利润进而得出等式求出答案;(2)直接利用每件利润销量=总利润进而得出函数关系式,利用二次函数增减性求出答案【详解】(1)根据题意得:(x20)(2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x20)(2x+1)=2(
21、x30)2+200,a=2,抛物线开口向下,当x30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元当x=28时,W最大=2(2830)2+200=192(元)销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键21、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分【解析】试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成绩占80%,平时
22、成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:807080%=24,2420%=120100,故不可能(3)设平时成绩为满分,即100分,综合成绩为10020%=20,设测试成绩为a分,根据题意可得:20+80%a80,解得:a1答:他的测试成绩应该至少为1分考点:一元一次不等式的应用;二元一次方程组的应用22、(1)200人,;(2)见解析,;(3)75万人.【解析】(1)用A类的人数除以所占的百分比求
23、出被调查的市民数,再用B类的人数除以总人数得出B类所占的百分比m,继而求出n的值即可;(2)求出C、D两组人数,从而可补全条形统计图,用360度乘以n即可得扇形区域所对应的圆心角的度数;(3)用该市的总人数乘以持有A、B两类所占的百分比的和即可【详解】(1)本次被调查的市民共有:(人),;(2)组的人数是(人)、组的人数是(人),;补全的条形统计图如下图所示:扇形区域所对应的圆心角的度数为:;(3)(万),若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.【点睛】本题考查了条形统计图、扇形统计图、统计表,读懂图形,找出必要的信息是解题的关键.23、【
24、解析】先找出a,b,c,再求出b2-4ac=28,根据公式即可求出答案【详解】解:x =即原方程的解为.【点睛】本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键24、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),【解析】(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可
25、;(3)存在这样的点P,使得QPO=OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标【详解】解:(1)设直线AB解析式为y=kx+b,把A(4,0),B(0,2)代入得:,解得:,直线AB的解析式为y=x2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=;(2)连接BQ,则易得PQOB,且PQ=OB,四边形PQBO是平行四边形,OP=BQ,OP+AQ=BQ+AQAB=2,(等号成立的条件是点Q在线段AB上),直线AB的解析式为y=x2,可设此时点Q的坐标为(t,t2),于是,此时点P的坐标为(t,t),点P在抛物线y=x2上,t=t2,解得:t=0或t=1,当t=0,点P与点O重合,不合题意,应舍去,OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),则tanHPO=,又,易得tanOBC=,当tanHPO=tanOBC时,可使得QPO=OBC,于是,得,解得:m=4,所以P(4,8)或(4,8)【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键
限制150内