《江苏省南京市玄武外国语校2023届十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京市玄武外国语校2023届十校联考最后数学试题含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1若|a|=a,则a为()Aa是负数Ba是正数Ca=0D负数或零2超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A0.8x10=90B0.08x10=90C900.8x=10Dx0.8x10=903如图,已知抛物线和直线.我
2、们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.下列判断: 当x2时,M=y2;当x0时,x值越大,M值越大;使得M大于4的x值不存在;若M=2,则x= 1 .其中正确的有 A1个B2个C3个D4个4如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D5已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x22x+kb+1=0 的根的情况是( )A有两个不相等的实数根B没有实数根C有两个相等的实数根D有一个
3、根是 06一个数和它的倒数相等,则这个数是( )A1B0C1D1和07的值是ABCD8下列二次根式中,是最简二次根式的是()ABCD9若代数式有意义,则实数x的取值范围是( )Ax0Bx2Cx0Dx210如图所示的几何体,上下部分均为圆柱体,其左视图是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11我们知道方程组的解是,现给出另一个方程组,它的解是_12我国古代易经一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_个13一个正多边形的每个
4、内角等于,则它的边数是_14从2,1,1,2四个数中,随机抽取两个数相乘,积为大于4小于2的概率是_15如图,ABC中,DE垂直平分AC交AB于E,A=30,ACB=80,则BCE=_ 16已知:如图,ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_三、解答题(共8题,共72分)17(8分)如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE求证:DE是O的切线;若AE=6,D=30,求图中阴影部分的面积18(8分)如图所示,AB是O的直径,AE是弦,C是劣弧AE的中点,过C作CDAB于点D
5、,CD交AE于点F,过C作CGAE交BA的延长线于点G求证:CG是O的切线求证:AFCF若sinG0.6,CF4,求GA的长19(8分)如图,在RtABC中,C90,以BC为直径的O交AB于点D,过点D作O的切线DE交AC于点E(1)求证:AADE;(2)若AB25,DE10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S(用含字母a的式子表示)20(8分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PHl于点H,则PF=PH.基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d
6、为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.(1)在点,中,抛物线的关联点是_ ;(2)如图2,在矩形ABCD中,点,点,若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是_.21(8分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,EAF=45,试判断BE,EF,FD之间的数量关系小聪把ABE绕点A逆时针旋转90至ADG,通过证明AEFAGF;从而发现并证明了EF=BE+FD【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,EAF=45,连接EF,
7、请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,BAC=90,AB=AC,点E、F在边BC上,且EAF=45,若BE=3,EF=5,求CF的长22(10分)计算:+-2+6tan3023(12分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动24先化简再求值:(1),其中x参考答案
8、一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据绝对值的性质解答.【详解】解:当a0时,|a|=-a,|a|=-a时,a为负数或零,故选D.【点睛】本题考查的是绝对值的性质,当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数-a;当a是零时,a的绝对值是零2、A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可 设某种书包原价每个x元,可得:0.8x10=90考点:由实际问题抽象出一元一次方程3、B【解析】试题分析:当y1=y2时,即时,解得:x=0或x=2,由函数图象可以得出当x2时, y2y1;当0x2时,y1y2;当x0时,
9、y2y1错误当x0时, -直线的值都随x的增大而增大,当x0时,x值越大,M值越大正确抛物线的最大值为4,M大于4的x值不存在正确;当0x2时,y1y2,当M=2时,2x=2,x=1;当x2时,y2y1,当M=2时,解得(舍去)使得M=2的x值是1或错误综上所述,正确的有2个故选B4、D【解析】解:设ABP中AB边上的高是hSPAB=S矩形ABCD, ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离在RtABE中,AB=5,AE=2+2=4,BE= =,即PA+PB的最小值为故选D5、A
10、【解析】判断根的情况,只要看根的判别式=b24ac的值的符号就可以了【详解】一次函数y=kx+b的图像经过第一、三、四象限k0, b0,方程x22x+kb+1=0有两个不等的实数根,故选A【点睛】根的判别式6、C【解析】根据倒数的定义即可求解.【详解】的倒数等于它本身,故符合题意.故选:.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.7、D【解析】根据特殊角三角函数值,可得答案【详解】解:,故选:D【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键8、B【解析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数
11、不含能开得尽方的因数或因式判断即可【详解】A、 =4,不符合题意;B、是最简二次根式,符合题意;C、=,不符合题意;D、=,不符合题意;故选B【点睛】本题考查最简二次根式的定义最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式9、D【解析】根据分式的分母不等于0即可解题.【详解】解:代数式有意义,x-20,即x2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.10、C【解析】试题分析:该几何体上下部分均为圆柱体,其左视图为矩形,故选C考点:简单组合体的三视图二、填空题(本大题共6个小题,每小题3分,共18分)
12、11、【解析】观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.12、1【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数64+千位上的数63+百位上的数62+十位上的数6+个位上的数,即164+263+362+06+2=1详解:2+06+366+2666+16666=1,故答案为:1点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了
13、学生的思维能力13、十二【解析】首先根据内角度数计算出外角度数,再用外角和360除以外角度数即可【详解】一个正多边形的每个内角为150,它的外角为30,3603012,故答案为十二【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角14、【解析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得【详解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,积为大于-4小于2的概率为=,故答案为:【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复
14、不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比15、1【解析】根据ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出ACE=A=30,再根据ACB=80即可解答【详解】DE垂直平分AC,A=30,AE=CE,ACE=A=30,ACB=80,BCE=80-30=1故答案为:116、1【解析】【分析】设四边形BCED的面积为x,则SADE=12x,由题意知DEBC且DE=BC,从而得,据此建立关于x的方程,解之可得【详解】设四边形BCED的面积为x,则SADE=12x,点D、E分别是边AB、
15、AC的中点,DE是ABC的中位线,DEBC,且DE=BC,ADEABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质三、解答题(共8题,共72分)17、(1)证明见解析;(2)阴影部分的面积为【解析】(1)连接OC,先证明OAC=OCA,进而得到OCAE,于是得到OCCD,进而证明DE是O的切线;(2)分别求出OCD的面积和扇形OBC的面积,利用S阴影=SCODS扇形OBC即可得到答案【详解】解:(1)连接OC, OA=OC, OAC=OCA, AC平分BAE, O
16、AC=CAE,OCA=CAE, OCAE, OCD=E, AEDE, E=90, OCD=90, OCCD,点C在圆O上,OC为圆O的半径, CD是圆O的切线;(2)在RtAED中, D=30,AE=6, AD=2AE=12, 在RtOCD中,D=30,DO=2OC=DB+OB=DB+OC, DB=OB=OC=AD=4,DO=8,CD=SOCD=8, D=30,OCD=90,DOC=60, S扇形OBC=OC2=, S阴影=SCODS扇形OBC S阴影=8,阴影部分的面积为818、(1)见解析;(2)见解析;(3)AG1【解析】(1)利用垂径定理、平行的性质,得出OCCG,得证CG是O的切线.
17、(2)利用直径所对圆周角为和垂直的条件得出2=B,再根据等弧所对的圆周角相等得出1=B,进而证得1=2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,C是劣弧AE的中点,OCAE,CGAE,CGOC,CG是O的切线;(2)证明:连结AC、BC,AB是O的直径,ACB90,2+BCD90,而CDAB,B+BCD90,B2,C是劣弧AE的中点,,1B,12,AFCF;(3)解:CGAE,FADG,sinG0.6,sinFAD0.6,CDA90,AFCF4,DF2.4,AD3.2,CDCF+DF6.4,AFCG,, DG,
18、AGDGAD1【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.19、(1)见解析;(2)75a.【解析】(1)连接CD,求出ADC=90,根据切线长定理求出DE=EC,即可求出答案;(2)连接CD、OD、OE,求出扇形DOC的面积,分别求出ODE和OCE的面积,即可求出答案【详解】(1)证明:连接DC,BC是O直径,BDC=90,ADC=90,C=90,BC为直径,AC切O于C,过点D作O的切线DE交AC于点E,DE=CE,EDC=ECD,ACB=ADC=90,A+ACD=90,ADE+EDC=90,A=ADE;(2)解:连接CD、OD、
19、OE,DE=10,DE=CE,CE=10,A=ADE,AE=DE=10,AC=20,ACB=90,AB=25,由勾股定理得:BC=15,CO=OD=,的长度是a,扇形DOC的面积是a=a,DE、EC和弧DC围成的部分的面积S=10+10a=75a【点睛】本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键20、 (1) (2) 【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2)当时,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得; 由知,分两种情况画
20、出图形进行讨论即可得. 【详解】(1),x=2时,y=1,此时P(2,1),则d=1+2=3,符合定义,是关联点;,x=1时,y=,此时P(1,),则d=+=3,符合定义,是关联点;,x=4时,y=4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;,x=0时,y=0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,故答案为;(2)当时,此时矩形上的所有点都在抛物线的下方,; 由,如图2所示时,CF最长,当CF=4时,即=4,解得:t=,如图3所示时,DF最长,当DF=4时,即DF=4,解得 t=, 故答案为 【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概
21、念,能灵活应用新概念,结合图形解题是关键.21、(1)DF=EF+BE理由见解析;(2)CF=1【解析】(1)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AEFAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE理由:如图1所示,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,ADC=ABE=90,点
22、C、D、G在一条直线上,EB=DG,AE=AG,EAB=GAD,BAG+GAD=90,EAG=BAD=90,EAF=15,FAG=EAGEAF=9015=15,EAF=GAF,在EAF和GAF中,EAFGAF,EF=FG,FD=FG+DG,DF=EF+BE;(2)BAC=90,AB=AC,将ABE绕点A顺时针旋转90得ACG,连接FG,如图2,AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,FG2=FC2+CG2=BE2+FC2;又EAF=15,而EAG=90,GAF=9015,在AGF与AEF中,AEFAGF,EF=FG,CF2=EF2BE2=52
23、32=16,CF=1“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫22、10 +【解析】根据实数的性质进行化简即可计算.【详解】原式=9-1+2-+6=10-=10 +【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.23、(1)150,(2)36,(3)1【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=15020%=30人,补全上面的条形统计图即可;(3)360乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可【详解】(1)m=2114%=150,(2)“足球“的人数=15020%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360=36;(4)120020%=1人,答:估计该校约有1名学生最喜爱足球活动故答案为150,36,1【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键24、【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题详解:原式= =当时,原式=点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法
限制150内