江苏省东台市第四教育联盟2022-2023学年中考数学适应性模拟试题含解析.doc
《江苏省东台市第四教育联盟2022-2023学年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省东台市第四教育联盟2022-2023学年中考数学适应性模拟试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A中位数不相等,方差不相等B平均数相等,方差不相等C中位数不相等,平均数相等D平均数不相等,方差相等2如图,在RtABC中,ACB=90,BC=12,AC=5,分别以点A,B为圆心,大于
2、线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则ACD的周长为()A13B17C18D253有下列四个命题:相等的角是对顶角;两条直线被第三条直线所截,同位角相等;同一种正五边形一定能进行平面镶嵌;垂直于同一条直线的两条直线互相垂直其中假命题的个数有()A1个 B2个 C3个 D4个4如图,在平面直角坐标系中,已知点A(3,6)、B(9,一3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是( )A(1,2)B(9,18)C(9,18)或(9,18)D(1,2)或(1,2)5平面直角坐标系内一点关于原点对称点的坐标是( )AB
3、CD6一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc4ac;4a+2b+c0;2a+b=0.其中正确的结论有:A4个B3个C2个D1个7有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( )A中位数相等 B平均数不同 CA组数据方差更大 DB组数据方差更大8下列计算正确的是()AB(a2)3=a6CD6a22a=12a39已知二次函数y=3(x1)2+k的图象上有三点A(,y1),B(2,y2),C(,y3),则y1、y2、y3的大小关系为()Ay1y2y3By2y1y3Cy3y1y2Dy3y2y110把一个多边形纸片沿一条直线截下一
4、个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A16B17C18D19二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H分别在边AC、AB上,则矩形EFGH的面积最大值为_12两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于_13计算:14如果把抛物线y=2x21向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_15如图,在 RtABC 中,C=90,AM 是 BC 边上的中线,cosAMC ,则 tanB 的值为_16在ABC中,MNBC 分
5、别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_三、解答题(共8题,共72分)17(8分)图1是一商场的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据:,)18(8分)如图,O中,AB是O的直径,G为弦AE的中点,连接OG并延长交O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC(1)求证:BC是O的切线;(2)O的半径为5,tanA=,求FD的长19(8分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球(1
6、)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式20(8分)在ABC中,AB=BC=2,ABC=120,将ABC绕着点B顺时针旋转角a(0a90)得到A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论(2)如图2,当a=30时,试判断四边形BC1DA的形状,并证明(3)在(2)的条件下,求线段DE的长度21(8分)如图,点A,B,C都在抛物线y=ax22amx+am2+2m5(其中a0)上,ABx轴,A
7、BC=135,且AB=1(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);(2)求ABC的面积(用含a的代数式表示);(3)若ABC的面积为2,当2m5x2m2时,y的最大值为2,求m的值22(10分)如图,在四边形ABCD中,BAC=ACD=90,B=D(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BCCDDA运动至A点停止,则从运动开始经过多少时间,BEP为等腰三角形.23(12分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A求抛物线顶点M的坐标;若点A的坐标为,轴,交
8、抛物线于点B,求点B的坐标;在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围24如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分别利用平均数以及方差和中位数的定义分析,进而求出答案【详解】2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: (23)2+(33)2+(34)2= ;3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: (34)2+(44)2+(54)2= ;故中
9、位数不相等,方差相等故选:D【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.2、C【解析】在RtABC中,ACB=90,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在RtABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.3、D【解析】根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断【详解】解:对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;只有当两条平行直线被第三条直线所截,
10、同位角相等,故为假命题;正五边形的内角和为540,则其内角为108,而360并不是108的整数倍,不能进行平面镶嵌,故为假命题;在同一平面内,垂直于同一条直线的两条直线平行,故为假命题故选:D【点睛】本题考查了命题与证明对顶角,垂线,同位角,镶嵌的相关概念关键是熟悉这些概念,正确判断4、D【解析】试题分析:方法一:ABO和ABO关于原点位似, ABOABO且 .AEAD2,OEOD1.A(1,2).同理可得A(1,2).方法二:点A(3,6)且相似比为,点A的对应点A的坐标是(3,6),A(1,2).点A和点A(1,2)关于原点O对称,A(1,2).故答案选D.考点:位似变换.5、D【解析】根
11、据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:根据关于原点对称的点的坐标的特点, 点A(-2,3)关于原点对称的点的坐标是(2,-3), 故选D【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.6、B【解析】试题解析:二次函数的图象的开口向下,a0,二次函数图象的对称轴是直线x=1, 2a+b=0,b0abc04a+2b+c0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.7、D【解析】分别求出两组数据的中位数、平均
12、数、方差,比较即可得出答案.【详解】A组数据的中位数是:4,平均数是:(2+3+4+5+6) 5=4,方差是:(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2 5=2;B组数据的中位数是:3,平均数是:(1+7+3+0+9) 5=4,方差是:(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2 5=12;两组数据的中位数不相等,平均数相等,B组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.8、D【解析】根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.【详解】,A选项错误;(a
13、2)3=- a6,B错误;,C错误;. 6a22a=12a3 ,D正确;故选:D.【点睛】本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.9、D【解析】试题分析:根据二次函数的解析式y3(x1)2k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3y2y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.10、A【解析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1
14、)边形故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】设HG=x,根据相似三角形的性质用x表示出KD,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可【详解】解:设HG=x四边形EFGH是矩形,HGBC,AHGABC,=,即=,解得:KD=6x,则矩形EFGH的面积=x(6x)=x2+6x=(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 东台市 第四 教育 联盟 2022 2023 学年 中考 数学 适应性 模拟 试题 解析
限制150内