江苏省前黄中学2023届高考冲刺押题(最后一卷)数学试卷含解析.doc
《江苏省前黄中学2023届高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省前黄中学2023届高考冲刺押题(最后一卷)数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺
2、”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )A12种B24种C36种D48种2已知,则的大小关系为ABCD3 “角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的( )A6B7C8D94设为虚数单位,复数,则实数的值是( )A1B-1C0D25已知函数,下列结论不正确的是( )A的图像关于点中心对称B既是奇函数,又是周期函数C的图像关于直线对称D的最大值是6 “”是“”的( )A充分不必要
3、条件B必要不充分条件C充要条件D既不充分又不必要条件7已知数列的前项和为,且,则的通项公式( )ABCD8给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A12种B18种C24种D64种9中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )A2或B2或C或D或10一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( ) ABCD11已知双曲线满足以下条件:双曲线E的右焦点与抛物线的焦点F重合;双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过
4、点F关于原点的对称点则双曲线的离心率是( )ABCD12上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:黄赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前80
5、00年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )A公元前2000年到公元元年B公元前4000年到公元前2000年C公元前6000年到公元前4000年D早于公元前6000年二、填空题:本题共4小题,每小题5分,共20分。13在的二项展开式中,所有项的系数的和为_14已知双曲线的左右焦点分别为,过的直线与双曲线左支交于两点,的内切圆的圆心的纵坐标为,则双曲线的离心率为_.15在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:甲
6、校学生成绩的优秀率大于乙校学生成绩的优秀率;甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是_.16展开式中的系数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.18(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.19(12分)设函数.(1)解不等式;(2)记的最大值为,若实数、满足,求证:.20(12分)已知椭圆E:()
7、的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为.()求椭圆E的方程;()若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值.21(12分)已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆的方程;(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.22(10分)如图所示,在三棱柱中,为等边三角形,平面,是线段上靠近的三等分点.(1)求证:;(2)求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,
8、共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.【点睛】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于
9、基础题.2、D【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,即,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确3、B【解析】模拟程序运行,观察变量值可得结论【详解】循环前,循环时:,不满足条件;,不满足条件;
10、,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出故选:B【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论4、A【解析】根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.5、D【解析】通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果【详解】解:,正确;,为奇函数,周期函数,正确;,正确;D: ,令,则,则时,或时,即在上单调递增,在和上单调递减;且,故D错误故选:【点睛】本题考查三角函数周
11、期性和对称性的判断,利用导数判断函数最值,属于中档题6、A【解析】首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可;【详解】解:,可解得或,“”是“”的充分不必要条件.故选:A【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题7、C【解析】利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.8、C【解析】根据题意,分2步进行分析:,将4人分成3组,甲不能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 中学 2023 高考 冲刺 押题 最后 一卷 数学试卷 解析
限制150内