《江苏省泰州市医药高新区2022-2023学年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州市医药高新区2022-2023学年中考冲刺卷数学试题含解析.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1直线yx4与x轴、y轴分别交于点A和点B
2、,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PCPD值最小时点P的坐标为( )A(3,0)B(6,0)C(,0)D(,0)2神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )A2.8103B28103C2.8104D0.281053下列运算正确的是()A(a2)4=a6Ba2a3=a6CD4如图,在RtABC中,ACB=90,点D,E分别是AB,BC的中点,点F是BD的中点若AB=10,则EF=()A2.5B3C4D55甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球
3、,将两球编号数相加得到一个数,则得到数( )的概率最大A3B4C5D66有一个数用科学记数法表示为5.2105,则这个数是()A520000BC52000D52000007已知,则的值为ABCD8如图的立体图形,从左面看可能是()ABCD9如图,在ABC中,AB=AC=3,BC=4,AE平分BAC交BC于点E,点D为AB的中点,连接DE,则BDE的周长是()A3B4C5D610如图,ABC是O的内接三角形,BOC120,则A等于()A50B60C55D65二、填空题(共7小题,每小题3分,满分21分)11某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_
4、12已知扇形的弧长为,圆心角为45,则扇形半径为_13在ABC中,AB=AC,A=36,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE下列结论BE平分ABC;AE=BE=BC;BEC周长等于AC+BC;E点是AC的中点其中正确的结论有_(填序号)14不等式组的解集是_15如果点、是二次函数是常数图象上的两点,那么_填“”、“”或“”16安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:互相关心;互相提醒;不要相互嬉水;相互比潜水深度;选择水流湍急的水域;选择有人看护的游泳池小颖从
5、这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_17点A(1,2),B(n,2)都在抛物线y=x24x+m上,则n=_三、解答题(共7小题,满分69分)18(10分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案19(5分)(1)化简:(2)解不等式组20(8分)某商场购进一种每件价格为90元的新商
6、品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?21(10分)如图,AB、AD是O的弦,ABC是等腰直角三角形,ADCAEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BFAC22(10分)如图 1,在等腰ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD在线段 AD 上任取一点 P,连接 PB,PE若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+
7、PE=y小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:x0123456y5.2 4.24.65.97.69.5说明:补全表格时,相关数值保留一位小数(参考数据:1.414,1.732,2.236)(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置23(12分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元在乙复印店复印同样的文件
8、,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元设在同一家复印店一次复印文件的页数为x(x为非负整数)(1)根据题意,填写下表:一次复印页数(页)5102030甲复印店收费(元)0.5 2 乙复印店收费(元)0.6 2.4 (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x70时,顾客在哪家复印店复印花费少?请说明理由24(14分)已知关于x的一元二次方程kx26x+10有两个不相等的实数根(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根参考答案一、选择题(
9、每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】作点D关于x轴的对称点D,连接CD交x轴于点P,此时PC+PD值最小,如图所示直线y=x+4与x轴、y轴的交点坐标为A(6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(3,1),点D(0,1)再由点D和点D关于x轴对称,可知点D的坐标为(0,1)设直线CD的解析式为y=kx+b,直线CD过点C(3,1),D(0,1),所以,解得:,即可得直线CD的解析式为y=x1令y=x1中y=0,则0=x1,解得:x=,所以点P的坐标为(,0)故答案选C考点:一次函数图象上点的坐标特征;轴对称-最短路线问题2、C【解析】
10、试题分析:28000=1.11故选C考点:科学记数法表示较大的数3、C【解析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ,所以C选项正确;D、与不能合并,所以D选项错误故选:C【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.4、A【解析】先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】ACB=90,D为AB中点CD=点E、F分别为BC、BD中点.故答案为:A.【点睛】本题考查的知识点是直角三
11、角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.5、C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为2,3,1,5,6,7,8和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1故p(5)最大,故选C6、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1
12、0时,n是正数;当原数的绝对值1时,n是负数【详解】5.2105=520000, 故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、C【解析】由题意得,4x0,x40,解得x=4,则y=3,则=,故选:C. 8、A【解析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.9、C【解析】根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得
13、BD、DE长,根据三角形周长公式即可求得答案【详解】解:在ABC中,AB=AC=3,AE平分BAC,BE=CE=BC=2,又D是AB中点,BD=AB=,DE是ABC的中位线,DE=AC=,BDE的周长为BD+DE+BE=+2=5,故选C【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键10、B【解析】由圆周角定理即可解答.【详解】ABC是O的内接三角形,A BOC,而BOC120,A60.故选B【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.二、填空题(共7小题,每小题3分,满分21分)11、4cm【解析】由题意知ODAB,交AB于点C
14、,由垂径定理可得出BC的长,在RtOBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论【详解】由题意知ODAB,交AB于点E,AB=16cm,BC=AB=16=8cm,在RtOBE中,OB=10cm,BC=8cm,OC=(cm),CD=OD-OC=10-6=4(cm)故答案为4cm【点睛】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键12、1【解析】根据弧长公式l=代入求解即可【详解】解:,故答案为1【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=13、【解析】试题分析:根据三角形内角和定理求出ABC、C的度数,根据线段垂直平
15、分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可解:AB=AC,A=36,ABC=C=72,DE是AB的垂直平分线,EA=EB,EBA=A=36,EBC=36,EBA=EBC,BE平分ABC,正确;BEC=EBA+A=72,BEC=C,BE=BC,AE=BE=BC,正确;BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,正确;BEEC,AE=BE,AEEC,点E不是AC的中点,错误,故答案为考点:线段垂直平分线的性质;等腰三角形的判定与性质14、2x1【解析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集【详解】由得x2,由得x1
16、,不等式组的解集为2x1故答案为:2x1【点睛】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)15、【解析】根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,【详解】解:二次函数的函数图象对称轴是x=0,且开口向上,在对称轴的左侧y随x的增大而减小,-3-4,.故答案为.【点睛】本题考查了二次函数的图像和数形结合的数学思想.16、【解析】根据事件的描述可得到描述正确的有,即可得到答案.【详解】共
17、有6张纸条,其中正确的有互相关心;互相提醒;不要相互嬉水;选择有人看护的游泳池,共4张,抽到内容描述正确的纸条的概率是, 故答案为:【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.17、1【解析】根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值【详解】:点A(1,2),B(n,2)都在抛物线y=x2-4x+m上, ,解得 或 ,点B为(1,2)或(1,2),点A(1,2),点B只能为(1,2),故n的值为1,故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解三、解答题(共7小题,满分
18、69分)18、(1)y=8x+2560(30x1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1x)吨,从乙仓库运往A港口的有吨,运往B港口的有50(1x)=(x30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x0,8-x0,x-300,100-x0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x
19、增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1x)吨,从乙仓库运往A港口的有吨,运往B港口的有50(1x)=(x30)吨,所以y=14x+20+10(1x)+8(x30)=8x+2560,x的取值范围是30x1(2)由(1)得y=8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=81+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口考点:一次函数的应用19、(1);(2)2x1【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可【详解】(1)原式;(2)不等式组整理得:, 则不等式组的解集为2x0,从而可得关于k的不等式组,解不等式组即可得;(2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.【详解】(1) 依题意,得,解得且;(2) 是小于9的最大整数,此时的方程为,解得,. 【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.
限制150内