江苏省宿迁市沭阳中学2022-2023学年高三六校第一次联考数学试卷含解析.doc
《江苏省宿迁市沭阳中学2022-2023学年高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省宿迁市沭阳中学2022-2023学年高三六校第一次联考数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设集合,集合 ,则 =( )ABCDR2已知公差不为0的等差数列的前项的和为,且成等比数列,则( )A56B72C88D403中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲
2、线的离心率是( )A2或B2或C或D或4已知集合,则=( )ABCD5复数(为虚数单位),则的共轭复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限6有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是( )A8B7C6D47已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,则,的大小关系(用不等号连接)为( )ABCD8学业水平测试成绩按照考生原始成绩从高到低分为、五个等级某班共有名学生且全部选考物理、化学两
3、科,这两科的学业水平测试成绩如图所示该班学生中,这两科等级均为的学生有人,这两科中仅有一科等级为的学生,其另外一科等级为,则该班( )A物理化学等级都是的学生至多有人B物理化学等级都是的学生至少有人C这两科只有一科等级为且最高等级为的学生至多有人D这两科只有一科等级为且最高等级为的学生至少有人9是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )ABCD10 若数列满足且,则使的的值为( )ABCD11若数列为等差数列,且满足,为数列的前项和,则( )ABCD12下列说法正确的是( )A命题“,”的否定形式是“,”B若平面,满足,则C随机变量服从正态分布(),若,则D设是实
4、数,“”是“”的充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13直线过圆的圆心,则的最小值是_.14设命题:,则:_15三棱锥中,点是斜边上一点.给出下列四个命题:若平面,则三棱锥的四个面都是直角三角形;若,平面,则三棱锥的外接球体积为;若,在平面上的射影是内心,则三棱锥的体积为2;若,平面,则直线与平面所成的最大角为.其中正确命题的序号是_(把你认为正确命题的序号都填上)16如图,在菱形ABCD中,AB=3,E,F分别为BC,CD上的点,若线段EF上存在一点M,使得,则_,_(本题第1空2分,第2空3分)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1
5、2分)已知函数(),不等式的解集为.(1)求的值;(2)若,且,求的最大值.18(12分)已知函数,()若,求的取值范围;()若,对,都有不等式恒成立,求的取值范围19(12分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有20(12分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面与平面所成二面角的正弦值21(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.22(10分)已知f(x)=|x +3|-|x-2|(1)求函数f(x)的最大值m;(2)正数a,b,c满足a +2b +3c=m,求证:参考
6、答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由题,选D考点:集合的运算2、B【解析】,将代入,求得公差d,再利用等差数列的前n项和公式计算即可.【详解】由已知,故,解得或(舍),故,.故选:B.【点睛】本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题.3、A【解析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得: ,得双曲线的一条渐近线的方程为 焦点在x、y轴上两种情况讨论:当焦
7、点在x轴上时有: 当焦点在y轴上时有: 求得双曲线的离心率 2或故选:A【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值此题易忽视两解得出错误答案4、D【解析】先求出集合A,B,再求集合B的补集,然后求【详解】,所以 .故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.5、C【解析】由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得【详解】解析:,对应点为,在第三象限故选:C【点睛】本题考查复数的除法运算,共轭复数
8、的概念,复数的几何意义掌握复数除法法则是解题关键6、A【解析】则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【点睛】本小题主要
9、考查正方体有关计算,属于基础题.7、A【解析】因为,所以,即周期为,因为为奇函数,所以可作一个周期-2e,2e示意图,如图在(,)单调递增,因为,因此,选点睛:函数对称性代数表示(1)函数为奇函数 ,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则8、D【解析】根据题意分别计算出物理等级为,化学等级为的学生人数以及物理等级为,化学等级为的学生人数,结合表格中的数据进行分析,可得出合适的选项.【详解】根据题意可知,名学生减去名全和一科为另一科为的学生人(其中物理化学的有人,物理化学的有人),表格变为:物理化学对于A选项,物理化学等级都是的学生至多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 宿迁市 沭阳 中学 2022 2023 学年 高三六校 第一次 联考 数学试卷 解析
限制150内