江苏省六合高级中学2022-2023学年高三最后一模数学试题含解析.doc





《江苏省六合高级中学2022-2023学年高三最后一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省六合高级中学2022-2023学年高三最后一模数学试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知直四棱柱的所有棱长相等,则直线与平面所成角的正切值等于( )ABCD2设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3已知函数f(x)sin2x+
2、sin2(x),则f(x)的最小值为( )ABCD4设,是非零向量,若对于任意的,都有成立,则ABCD5已知为一条直线,为两个不同的平面,则下列说法正确的是( )A若,则B若,则C若,则D若,则6已知x,y满足不等式,且目标函数z9x+6y最大值的变化范围20,22,则t的取值范围( )A2,4B4,6C5,8D6,77如图,棱长为的正方体中,为线段的中点,分别为线段和 棱 上任意一点,则的最小值为( )ABCD8二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A180B90C45D3609复数满足为虚数单位),则的虚部为( )ABCD10已知f(x)=ax2+bx是定义
3、在a1,2a上的偶函数,那么a+b的值是ABCD11若非零实数、满足,则下列式子一定正确的是( )ABCD12设集合,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设函数,若对于任意的,2,不等式恒成立,则实数a的取值范围是 14已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数_15将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是_16已知,圆,直线PM,PN分别与圆O相切,切点为M,N,若,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分
4、)已知函数,.(1)求函数在处的切线方程;(2)当时,证明:对任意恒成立.18(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由19(12分)已知等差数列和等比数列满足:(I)求数列和的通项公式;(II)求数列的前项和.20(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关
5、系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.21(12分)已知.(1)求的单调区间;(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.22(10分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值参考答案
6、一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系求解平面的法向量,利用线面角的向量公式即得解.【详解】如图所示的直四棱柱,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系设,则,设平面的法向量为,则取,得设直线与平面所成角为,则,直线与平面所成角的正切值等于故选:D【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.2、B【解析】先解不等式化简两个条件,利用集合法判断充分必要
7、条件即可【详解】解不等式可得,解绝对值不等式可得,由于为的子集,据此可知“”是“”的必要不充分条件故选:B【点睛】本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.3、A【解析】先通过降幂公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.4、D【解析】画出,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足
8、,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.5、D【解析】A. 若,则或,故A错误;B. 若,则或故B错误;C. 若,则或,或与相交;D. 若,则,正确.故选D.6、B【解析】作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组所表示的可行域如图AOB当t2时,可行域即为如图中的OAM,此时目标函数z9x+6y 在A(2,0)取得最大值Z18不符合题意t2时可知目标函数Z9x+6y在的交点()处取得最大值,此时Zt+16由题意可得,20t+1622解可得4t6故
9、选:B【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.7、D【解析】取中点,过作面,可得为等腰直角三角形,由,可得,当时, 最小,由 ,故,即可求解.【详解】取中点,过作面,如图:则,故,而对固定的点,当时, 最小此时由面,可知为等腰直角三角形,故.故选:D【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.8、A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,令,则,.考点:1.二项式定理;2.组合数的计算.9、C【解析】,分子分母同乘以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 六合 高级中学 2022 2023 学年 最后 数学试题 解析

限制150内