江苏省淮海中学2023年高考临考冲刺数学试卷含解析.doc
《江苏省淮海中学2023年高考临考冲刺数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省淮海中学2023年高考临考冲刺数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。12019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”
2、、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( )A小明B小红C小金D小金或小明2在边长为2的菱形中,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为( )ABCD3已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则( )ABCD4已知各项都为正的等差数列中,若,成等比数列,则( )ABCD5已知等差数列中,则( )A
3、20B18C16D146已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为( )ABCD7已知等差数列的公差为,前项和为,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数( ).A6B5C4D38已知分别为圆与的直径,则的取值范围为( )ABCD9以下三个命题:在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为( )A3B2C1D010已知双曲线,为坐标原点,、
4、为其左、右焦点,点在的渐近线上,且,则该双曲线的渐近线方程为( )ABCD11在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为( )A8B9C10D1112下图是我国第2430届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( )金牌(块)银牌(块)铜牌(块)奖牌总数2451112282516221254261622125027281615592832171463295121281003038272388A中国代表团的奥运奖牌总数一直保持上升趋势B折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C第30届与第29届北
5、京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5二、填空题:本题共4小题,每小题5分,共20分。13直线是圆:与圆:的公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_14设等比数列的前项和为,若,则_15如果函数(,且,)在区间上单调递减,那么的最大值为_16在面积为的中,若点是的中点,点满足,则的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐
6、标方程为(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积18(12分)已知点、分别在轴、轴上运动,(1)求点的轨迹的方程;(2)过点且斜率存在的直线与曲线交于、两点,求的取值范围19(12分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.20(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.21(12分)如图,在三棱柱中,已知四边形为矩形,的角平分线交于.(1)求证:平面平面;(2)求二面角的余弦值.22(10分)在直角坐标系中,圆的参数方程为(为参数),以为极点,
7、轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将三个人制作的所有情况列举出来,再一一论证.【详解】依题意,三个人制作的所有情况如下所示:123456鸿福齐天小明小明小红小红小金小金国富民强小红小金小金小明小红小明兴国之路小金小红小明小金小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选:B.【点睛】本题考查推理与
8、证明,还考查推理论证能力以及分类讨论思想,属于基础题.2、D【解析】取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.3、D【解析】根据X的分布列列式求出期望,方差,再利用将方差变形为,
9、从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望方差的求法,结合了概率二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.4、A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.5、A【解析】设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【详解】设等差数列的公差为.由得,解得.所以.故选:A【点睛】本题主要考查了等差数列的基本量求解,属于基础题.6、A【解析】求出抛物线
10、的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程【详解】抛物线y22px(p0)的焦点坐标为(1,0),则p2,又ep,所以e2,可得c24a2a2+b2,可得:ba,所以双曲线的渐近线方程为:y故选:A【点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用7、C【解析】若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【详解】由已知,又三角形有一个内角为,所以,解得或(舍),故,当时,取得最大值,所以.故选:C.【点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.8、A【解析】由题先
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 淮海 中学 2023 年高 考临考 冲刺 数学试卷 解析
限制150内