江苏省徐州五中2022-2023学年高考冲刺模拟数学试题含解析.doc
《江苏省徐州五中2022-2023学年高考冲刺模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省徐州五中2022-2023学年高考冲刺模拟数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行如图所示的程序框图后,输出的值为5,则的取值范围是( ). ABCD2已知函数f(x),若关于x的方程f(x)kx恰有4个不相等的实数根,则实数k的取值范围是()A B C D 3阅读如图
2、的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( )ABCD4已知,则的大小关系为ABCD5已知函数,若成立,则的最小值为( )A0B4CD6某几何体的三视图如图所示,则该几何体的体积为( )ABCD7已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( )ABCD8若(12ai)i1bi,其中a,bR,则|abi|()ABCD59若复数z满足,则( )ABCD10下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则( )ABC1D1
3、1已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( )ABCD12对于任意,函数满足,且当时,函数.若,则大小关系是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数图象上一点处的切线方程为,则_14已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数_15给出下列四个命题,其中正确命题的序号是_(写出所有正确命题的序号)因为所以不是函数的周期;对于定义在上的函数若则函数不是偶函数;“”是“”成立的充分必要条件;若实数满足则16已知(2x-1)7=ao+a1x+ a2x2+a7x7,则a2=_.三、解答题:共70分。解答应写出文字说明、证明
4、过程或演算步骤。17(12分)如图中,为的中点,.(1)求边的长;(2)点在边上,若是的角平分线,求的面积.18(12分)已知数列满足,且.(1)求证:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和.19(12分)设数阵,其中、设,其中,且定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、)表示“将经过变换得到,再将经过变换得到、 ,以此类推,最后将经过变换得到”,记数阵中四个数的和为(1)若,写出经过变换后得到的数阵;(2)若,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过20(12分)在直角
5、坐标系中,曲线的参数方程为(为参数).点在曲线上,点满足.(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.21(12分)已知椭圆:的两个焦点是,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.(1)求椭圆的标准方程;(2)求证:为定值.22(10分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:的定义域和值域都是;在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.参考答案一、选择题:本题
6、共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.2、D【解析】由已知可将问题转化为:yf(x)的图象和直线ykx有4个交点,作出图象,由图可得:点(1,0)必须在直线ykx的下方,即可求得:k;再求得直线ykx和yln x相切时,k;结合图象即可得解.【详解】若关于x的方程f(x)kx恰
7、有4个不相等的实数根,则yf(x)的图象和直线ykx有4个交点作出函数yf(x)的图象,如图,故点(1,0)在直线ykx的下方k10,解得k.当直线ykx和yln x相切时,设切点横坐标为m,则k,m.此时,k,f(x)的图象和直线ykx有3个交点,不满足条件,故所求k的取值范围是,故选D.【点睛】本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题3、C【解析】根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.【详解】根据循环程序框图可知, 则,此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,故选
8、:C.【点睛】本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.4、D【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,即,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确5、A【解析】令,进而求得,
9、再转化为函数的最值问题即可求解.【详解】(),令:,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.6、D【解析】结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 徐州 2022 2023 学年 高考 冲刺 模拟 数学试题 解析
限制150内