江苏省新沂市第一学校2022-2023学年高三第一次调研测试数学试卷含解析.doc
《江苏省新沂市第一学校2022-2023学年高三第一次调研测试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省新沂市第一学校2022-2023学年高三第一次调研测试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为( )ABC 或 D 或 2若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )
2、A B C D3在中,为边上的中点,且,则( )ABCD4已知复数(为虚数单位)在复平面内对应的点的坐标是( )ABCD5已知复数,则对应的点在复平面内位于( )A第一象限B第二象限C第三象限D第四象限6设函数,当时,则( )ABC1D7关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )ABCD8已知等比数列满足,等差数列中,为数列的前项和,则( )A36B72CD9已知函
3、数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为( )ABCD10已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为( )ABCD11执行如图所示的程序框图,若输入的,则输出的( )A9B31C15D6312已知是的共轭复数,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,再次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合
4、格的概率依次为0.6、0.5、0.75;则第一次烧制后恰有一件产品合格的概率为_;经过前后两次烧制后,合格工艺品的件数为,则随机变量的期望为_.14若曲线(其中常数)在点处的切线的斜率为1,则_.15复数(其中i为虚数单位)的共轭复数为_.16已知复数(为虚数单位),则的模为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.()若,求曲线在处的切线方程;()当时,要使恒成立,求实数的取值范围.18(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点. 为椭圆的右焦点, 为椭圆上关于原点对称的两点,连接分别交椭圆于两点.求椭圆的标准方程;若,
5、求的值;设直线, 的斜率分别为, ,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.19(12分)已知矩形中,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.20(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值21(12分)椭圆:的离心率为,点 为椭圆上的一点.(1)求椭圆的标准方程;(2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线
6、的斜率之积为定值.22(10分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,2aq2=aq+a,2q2=q+1,q=1或q= 故选:D【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练2、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的
7、概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案 是正确的,应选答案B。点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。3、A【解析】由为边上的中点,表示出,然后用向量模的计算公式求模.【详解】解:为边上的中点,故选:A【点睛】在三角形中,考查中点向量公式和向量模的求法,是基础题.4、A【解析】直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.【详解】解:,在
8、复平面内对应的点的坐标是.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题5、A【解析】利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.6、A【解析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值【详解】,时,由题意,故选:A【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键7、D【解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 新沂市 第一 学校 2022 2023 学年 第一次 调研 测试 数学试卷 解析
限制150内