江苏省白蒲高级中学2023年高三六校第一次联考数学试卷含解析.doc
《江苏省白蒲高级中学2023年高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省白蒲高级中学2023年高三六校第一次联考数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的
2、面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )ABC10D2已知变量,满足不等式组,则的最小值为( )ABCD3已知双曲线满足以下条件:双曲线E的右焦点与抛物线的焦点F重合;双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点则双曲线的离心率是( )ABCD4在中,为上异于,的任一点,为的中点,若,则等于( )ABCD5已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为( )ABCD6单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬
3、行,每走完一条棱称为“走完一段”白蚂蚁爬地的路线是AA1A1D1,黑蚂蚁爬行的路线是ABBB1,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A1BCD07中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、为顶点的多边形为正五边形,且,则( )ABCD8已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为( )ABCD9已知函数,集合,则( )ABCD10已知集合,则集合( )ABCD11已知函数,当时,恒成立,则的取值范
4、围为( )ABCD12下列命题中,真命题的个数为( )命题“若,则”的否命题;命题“若,则或”;命题“若,则直线与直线平行”的逆命题.A0B1C2D3二、填空题:本题共4小题,每小题5分,共20分。13设为偶函数,且当时,;当时,关于函数的零点,有下列三个命题:当时,存在实数m,使函数恰有5个不同的零点;若,函数的零点不超过4个,则;对,函数恰有4个不同的零点,且这4个零点可以组成等差数列其中,正确命题的序号是_14 “六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两
5、节,“射”和“御”两讲座必须相邻的不同安排种数为_15已知函数若关于的不等式的解集为,则实数的所有可能值之和为_.16已知函数为奇函数,且与图象的交点为,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.18(12分)已知函数,函数,其中,是的一个极值点,且.(1)讨论的单调
6、性(2)求实数和a的值(3)证明19(12分)已知函数(1)解不等式:;(2)求证:20(12分)已知函数,(1)讨论的单调性;(2)若在定义域内有且仅有一个零点,且此时恒成立,求实数m的取值范围.21(12分)设首项为1的正项数列an的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数(1)求p的值;(2)求证:数列an为等比数列;(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x1,且y2”22(10分)已知函数.()当时,求不等式的解集;()若存在满足不等式,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在
7、每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】直接根据几何概型公式计算得到答案.【详解】根据几何概型:,故.故选:.【点睛】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.2、B【解析】先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.3、B【解析】由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率【详解】依题意
8、可得,抛物线的焦点为,F关于原点的对称点;,所以,设,则,解得, ,可得,又,可解得,故双曲线的离心率是.故选B【点睛】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.4、A【解析】根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.5、D【解析】先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【详解】由题设有,故,故椭圆,因为点为上的任意一点,故.
9、又,因为,故,所以.故选:D.【点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.6、B【解析】根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离【详解】由题意,白蚂蚁爬行路线为AA1A1D1D1C1C1CCBBA,即过1段后又回到起点,可以看作以1为周期,由,白蚂蚁爬完2020段后到回到C点;同理,黑蚂蚁爬行路线为ABBB1B1C1C1D1D1DDA,黑
10、蚂蚁爬完2020段后回到D1点,所以它们此时的距离为.故选B.【点睛】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.7、A【解析】利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题8、B【解析】令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,解得.故选:B
11、.【点睛】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.9、C【解析】分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,故选C【点睛】本题主要考查了集合的基本运算,难度容易.10、D【解析】根据集合的混合运算,即可容易求得结果.【详解】,故可得.故选:D.【点睛】本题考查集合的混合运算,属基础题.11、A【解析】分析可得,显然在上恒成立,只需讨论时的情况即可,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 高级中学 2023 年高 三六校 第一次 联考 数学试卷 解析
限制150内