江苏省泰州等四市2022-2023学年高三第二次调研数学试卷含解析.doc
《江苏省泰州等四市2022-2023学年高三第二次调研数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州等四市2022-2023学年高三第二次调研数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD2若双曲线的渐近线与圆相切,则双曲线的离心率为( )A2BCD3设是等差数列,且公差不为零
2、,其前项和为则“,”是“为递增数列”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件4设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )ABCD5若双曲线的焦距为,则的一个焦点到一条渐近线的距离为( )ABCD6已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )ABCD7以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是( )(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A3月
3、份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B4月份仅有三个城市居民消费价格指数超过102C四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D仅有天津市从年初开始居民消费价格指数的增长呈上升趋势8若,满足约束条件,则的取值范围为( )ABCD9执行如图所示的程序框图若输入,则输出的的值为( )ABCD10当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是( )ABCD11设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面12已知且,函数,若,则( )A2BCD二、填空题:本题共4小题,每
4、小题5分,共20分。13下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为_.14函数的图象在处的切线与直线互相垂直,则_15 “石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头.甲、乙两人玩一次该游戏,则甲不输的概率是_.16已知非零向量的夹角为,且,则_.三、解答题:共70分。解答应写出文字说明、证明
5、过程或演算步骤。17(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.18(12分)已知函数,记的最小值为.()解不等式;()若正实数,满足,求证:.19(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.20(12分)在平面直角坐标系中,直线与抛物线:交于,两点,且当时,.(1)求的值;(2)设线段的中点为,抛物线在点处的切线与的准线交于点,证明:轴.21(12分)己
6、知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.22(10分)已知函数.()若是第二象限角,且,求的值;()求函数的定义域和值域.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.2、C【解析】利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程
7、为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.3、A【解析】根据等差数列的前项和公式以及充分条件和必要条件的定义进行判断即可【详解】是等差数列,且公差不为零,其前项和为,充分性:,则对任意的恒成立,则,若,则数列为单调递减数列,则必存在,使得当时,则,不合乎题意;若,由且数列为单调递增数列,则对任意的,合乎题意.所以,“,”“为递增数列”;必要性:设,当时,此时,但数列是递增数列.所以,“,”“为递增数列”.因此,“,”是“为递增数列”的充分而不必要条件.故选:A.【点睛】本题主
8、要考查充分条件和必要条件的判断,结合等差数列的前项和公式是解决本题的关键,属于中等题4、C【解析】求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【点睛】本题主要考查了求双曲线的方程,属于中档题.5、B【解析】根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.【详解】因为双曲线的焦距为,故可得,解得,不妨取;又焦点,其中一条渐近线为,由点到直线的距离公式即可求的.故选:B.【点睛】本题考查由双曲线的焦距求方程,以及双曲线的
9、几何性质,属综合基础题.6、C【解析】可设,根据在上为偶函数及便可得到:,可设,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,;若,且,则:;在上是减函数;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.7、D【解析】采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 泰州 2022 2023 学年 第二次 调研 数学试卷 解析
限制150内