江苏省苏州市、常熟市市级名校2022-2023学年中考三模数学试题含解析.doc
《江苏省苏州市、常熟市市级名校2022-2023学年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市、常熟市市级名校2022-2023学年中考三模数学试题含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC为等腰直角三角形,C=90,
2、点P为ABC外一点,CP=,BP=3,AP的最大值是()A+3B4C5D32如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )ABCD3如图,ABCD,DBBC,2=50,则1的度数是()A40B50C60D1404能说明命题“对于任何实数a,|a|a”是假命题的一个反例可以是()Aa2BaCa1Da5某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为()A1.6104人B1.6105人C0.16105人D16103人6如
3、图,点P是AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是( )ABCD7如图,O的半径为6,直径CD过弦EF的中点G,若EOD60,则弦CF的长等于( )A6B6C3D98函数y和y在第一象限内的图象如图,点P是y的图象上一动点,PCx轴于点C,交y的图象于点B给出如下结论:ODB与OCA的面积相等;PA与PB始终相等;四边形PAOB的面积大小不会发生变化;CAAP其中所有正确结论的序号是()ABCD9如图,I是ABC的内心,AI向延长线和ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )A线段D
4、B绕点D顺时针旋转一定能与线段DC重合B线段DB绕点D顺时针旋转一定能与线段DI熏合CCAD绕点A顺时针旋转一定能与DAB重合D线段ID绕点I顺时针旋转一定能与线段IB重合10已知点A(1,y1)、B(2,y2)、C(3,y3)都在反比例函数y的图象上,则y1、y2、y3的大小关系是( )Ay1y2y3By3y2y1Cy2y1y3Dy3y1y2二、填空题(共7小题,每小题3分,满分21分)11如图,在RtABC中,B90,AB3,BC4,将ABC折叠,使点B恰好落在边AC上,与点B重合,AE为折痕,则EB _12如图所示一棱长为3cm的正方体,把所有的面均分成33个小正方形其边长都为1cm,假
5、设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_秒钟13如果=k(b+d+f0),且a+c+e=3(b+d+f),那么k=_14用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖_块;第n个图案有白色地面砖_块15如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,则_16抛物线y2x2+3x+k2经过点(1,0),那么k_17比较大小:3_ (填或)三、解答题(共7小题,满分69分)18(10分)如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,(1)求证:直线为的切线;(2)求证:;(3)若,求的
6、长19(5分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)120130180每天销量y(kg)1009570设y与x的关系是我们所学过的某一种函数关系(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?20(8分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上21(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,
7、x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是_;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?22(10分)已如:O与O上的一点A(1)求作:O的内接
8、正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由23(12分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25x3040.0830x3580.1635x40a0.3240x45bc45x50100.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数24(14分)如图,已知
9、点A(1,a)是反比例函数y1=的图象上一点,直线y2=与反比例函数y1=的图象的交点为点B、D,且B(3,1),求:()求反比例函数的解析式;()求点D坐标,并直接写出y1y2时x的取值范围;()动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】过点C作,且CQ=CP,连接AQ,PQ,证明根据全等三角形的性质,得到 根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.【详解】过点C作,且CQ=CP,连接AQ,PQ, 在和中 AP的最大值是5.故选:C.【点睛】考查
10、全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.2、C【解析】试题解析:四边形ABCD是平行四边形, 故选C.3、A【解析】试题分析:根据直角三角形两锐角互余求出3,再根据两直线平行,同位角相等解答解:DBBC,2=50,3=902=9050=40,ABCD,1=3=40故选A4、A【解析】将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.【详解】(1)当时,此时,当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;(2)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;(3)当时,此时,当时,不能说明命题“对于任意实数a,
11、”是假命题,故不能C;(4)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.5、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】用科学记数法表示16000,应记作1.6104,故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示
12、时关键要正确确定a的值以及n的值6、B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时PMN的周长最小由线段垂直平分线性质可得出PMN的周长就是P3P3的长,OP=3,OP3=OP3=OP=3又P3P3=3,,OP3=OP3=P3P3,OP3P3是等边三角形, P3OP3=60,即3(AOP+BOP)=60,AOP+BOP=30,即AOB=30,故选B考点:3线段垂直平分线性质;3轴对称作图7、B【解析】连接DF,根据垂径定理得到 , 得到DCF=EOD=30,根据圆周角定理、余弦的定义计算即可【详解】解:连接DF,直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 苏州市 常熟市 名校 2022 2023 学年 中考 数学试题 解析
限制150内