《江苏省江阴市第一中学2023年高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省江阴市第一中学2023年高三第二次模拟考试数学试卷含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1公差不为零的等差数列an中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列an的公差等于( )A1B2C3D42设,随机变量的分布列是01则当在内增大时,( )A减小,减小B减
2、小,增大C增大,减小D增大,增大3已知函数,若曲线在点处的切线方程为,则实数的取值为( )A-2B-1C1D24已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( )ABCD5已知直三棱柱中,则异面直线与所成的角的正弦值为( )ABCD6记递增数列的前项和为.若,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则( )ABCD7已知直线与直线则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件8赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为
3、边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD9已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()ABCD10在三棱锥中,且分别是棱,的中点,下面四个结论:;平面;三棱锥的体积的最大值为;与一定不垂直.其中所有正确命题的序号是( )ABCD11若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统
4、计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ). A6500元B7000元C7500元D8000元12在中,角所对的边分别为,已知,当变化时,若存在最大值,则正数的取值范围为ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知的三个内角为,且,成等差数列, 则的最小值为_,最大值为_.14如图,在长方体中,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是_.15若,则的展开式中含的项的系数为_.16近年来,新能源汽车技术不断推陈
5、出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲
6、线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.18(12分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.19(12分)已知在中,内角所对的边分别为,若,且.(1)求的值;(2)求的面积.20(12分)如图,在四棱锥中,底面是边长为2的菱形,平面平面,点为棱的中点()在棱上是否存在一点,使得平面,并说明理由;()当二面角的余弦值为时,求直线与平面所成的角21(12分)已知某种细
7、菌的适宜生长温度为1227,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:)变化的规律,收集数据如下:温度/14161820222426繁殖数量/个2530385066120218对数据进行初步处理后,得到了一些统计量的值,如表所示:20784.11123.8159020.5其中,.(1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于温度的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表格数据,建立关于的回归方程(结果精确到0.1);(3)当温度为27时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据,其回归直线的斜率和截
8、距的最小二成估计分别为,参考数据:.22(10分)已知矩阵,.求矩阵;求矩阵的特征值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设数列的公差为.由,成等比数列,列关于的方程组,即求公差.【详解】设数列的公差为,.成等比数列,解可得.故选:.【点睛】本题考查等差数列基本量的计算,属于基础题.2、C【解析】,判断其在内的单调性即可【详解】解:根据题意在内递增,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题3、B【解析】求出函数的导数,
9、利用切线方程通过f(0),求解即可;【详解】f (x)的定义域为(1,+),因为f(x)a,曲线yf(x)在点(0,f(0)处的切线方程为y2x,可得1a2,解得a1,故选:B【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力4、A【解析】根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意, ,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.5、C【解析】设M,N,P分别
10、为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.【详解】根据题意画出图形:设M,N,P分别为和的中点,则的夹角为MN和NP夹角或其补角可知,.作BC中点Q,则为直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故选:C【点睛】此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.6、D【解析】由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围【详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,只有是该数列中的项,同理可以得到,也是该数列中的项
11、,且有,或(舍,根据,同理易得,故选:D【点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题7、B【解析】利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线 ,此时两条直线平行;当时,直线,直线 ,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.8、D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得
12、结论.【详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题9、C【解析】设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论【详解】设分别是的中点平面 是等边三角形 又平面 为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为 球的半径平面 本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面
13、所求角,再利用球心位置来求解出线段长,属于中档题10、D【解析】通过证明平面,证得;通过证明,证得平面;求得三棱锥体积的最大值,由此判断的正确性;利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,又,所以平面,所以,故正确;因为,所以平面,故正确;当平面与平面垂直时,最大,最大值为,故错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.11、D【解析】设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果
14、即可【详解】设目前该教师的退休金为x元,则由题意得:600015%x10%1解得x2故选D【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题12、C【解析】因为,所以根据正弦定理可得,所以,所以,其中,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】根据正弦定理可得,利用余弦定理以及均值不等式,可得角的范围,然后构造函数,利用导数,研究函数性质,可得结果.【详解】由,成等差数列所以所以又化简可得当且仅当时,取等号又,所以令,则当,即时,当,即时,则在递增,在递减所以由,所以所以的最小值为
15、最大值为故答案为:,【点睛】本题考查等差数列、正弦定理、余弦定理,还考查了不等式、导数的综合应用,难点在于根据余弦定理以及不等式求出,考验分析能力以及逻辑思维能力,属难题.14、【解析】如图,连接,证明平面平面EFG.因为直线平面EFG,所以点P在直线AC上. 当时.线段的长度最小,再求此时的得解.【详解】如图,连接, 因为E,F,G分别为AB,BC,的中点,所以,平面,则平面.因为,所以同理得平面,又.所以平面平面EFG.因为直线平面EFG,所以点P在直线AC上.在中,故当时.线段的长度最小,最小值为.故答案为:【点睛】本题主要考查空间位置关系的证明,考查立体几何中的轨迹问题,意在考查学生对
16、这些知识的理解掌握水平.15、【解析】首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.16、【解析】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:,由条件概率公式即得解.【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率: 故答案为:【点睛】本题考查了条件概率的应用,考查了学生概念
17、理解,数学应用,数学运算的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(为参数),;(2)【解析】分析:(1)直线的参数方程为(为参数),其中表示之间的距离,而极坐标方程可化为,从而的直角方程为.(2)设,则 ,利用在圆上得到满足的方程,最后利用韦达定理就可求出两条线段的和.详解:(1)直线的参数方程为(为参数).曲线的极坐标方程可化为.把,代入曲线的极坐标方程可得,即.(2)把直线的参数方程为(为参数)代入圆的方程可得:.曲线与直线相交于不同的两点,又,.又,.,.的取值范围是.点睛:(1)直线的参数方程有多种形式,其中一种为(为直线的倾斜角,
18、 是参数),这样的参数方程中的参数有明确的几何意义,它表示 之间的距离.(2)直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.18、(1),;(2)1.【解析】(1)利用正弦的和角公式,结合极坐标化为直角坐标的公式,即可求得曲线的直角坐标方程;先写出曲线的普通方程,再利用公式化简为极坐标即可;(2)先求出的直角坐标,据此求得中点的直角坐标,将其转化为极坐标,联立曲线的极坐标方程,即可求得两点的极坐标,则距离可解.【详解】(1):可整理为,利用公式可得其直角坐标方程为:,:的普通方程为,利用公式可得其极坐标方
19、程为(2)由(1)可得的直角坐标方程为,故容易得,的极坐标方程为,把代入得,.把代入得,.,即,两点间的距离为1.【点睛】本题考查极坐标方程和直角坐标方程之间的转化,涉及参数方程转化为普通方程,以及在极坐标系中求两点之间的距离,属综合基础题.19、(1);(2)【解析】(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,化简可得,解得.(2)在中,.【点睛】本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.20、(1)见解析
20、(2)【解析】()取的中点,连结、,得到故且,进而得到,利用线面平行的判定定理,即可证得平面.()以为坐标原点建立如图空间直角坐标系,设,求得平面的法向量为,和平面的法向量,利用向量的夹角公式,求得,进而得到为直线与平面所成的角,即可求解.【详解】()在棱上存在点,使得平面,点为棱的中点理由如下:取的中点,连结、,由题意,且,且,故且.所以,四边形为平行四边形.所以,又平面,平面,所以,平面.()由题意知为正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以为坐标原点建立如图空间直角坐标系,设,则由题意知,设平面的法向量为,则由得,令,则,所以取,显然可取平面的法向量,由题意:
21、,所以.由于平面,所以在平面内的射影为,所以为直线与平面所成的角,易知在中,从而,所以直线与平面所成的角为.【点睛】本题考查了立体几何中的面面垂直的判定和直线与平面所成角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成,着重考查了分析问题和解答问题的能力.21、(1)作图见解析;更适合(2)(3)预报值为245【解析】(1)由散点图即可得到答案;(2)把两边取自然对数,得,由 计算得到,再将代入可得,最终求得,即;(3)将代入中计算即可.【详解】解:(1)绘出关于的散点图,如图所示:由散点图可知,更适合作为该种细菌的繁殖数量关于的回归方程类型;(2)把两边取自然对数,得,即,由.,则关于的回归方程为;(3)当时,计算可得;即温度为27时,该种细菌的繁殖数量的预报值为245.【点睛】本题考查求非线性回归方程及其应用的问题,考查学生数据处理能力及运算能力,是一道中档题.22、;,.【解析】由题意,可得,利用矩阵的知识求解即可.矩阵的特征多项式为,令,求出矩阵的特征值.【详解】设矩阵,则,所以,解得,所以矩阵;矩阵的特征多项式为,令,解得,即矩阵的两个特征值为,.【点睛】本题考查矩阵的知识点,属于常考题.
限制150内