江苏省宜兴市桃溪中学2022-2023学年中考数学考试模拟冲刺卷含解析.doc
《江苏省宜兴市桃溪中学2022-2023学年中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省宜兴市桃溪中学2022-2023学年中考数学考试模拟冲刺卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一次函数满足,且随的增大而减小,则此函数的图象不经过( )A第一象限B第二象限C第三象限D第四象限2如图,在ABC中,ABAC,A30,AB的垂直平分线l交AC于点D,则CBD的度数为( )A30B45C50D753要使式子有意义,x的取值范
2、围是()Ax1Bx0Cx1且0Dx1且x04如图,O的半径为6,直径CD过弦EF的中点G,若EOD60,则弦CF的长等于( )A6B6C3D95如果解关于x的分式方程时出现增根,那么m的值为A-2B2C4D-46如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A()B()C()D()7下列计算正确的是()Aa4ba2b=a2b B(ab)2=a2b2Ca2a3=a6 D3a2+2a2=a28正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()
3、A30B60C120D1809如图,在RtABC中,C=90,CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A1B2C3D410如图,在ABC中,AB=AC,BAC=90,直角EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:APECPF;AE=CF;EAF是等腰直角三角形;SABC=2S四边形AEPF,上述结论正确的有( )A1个B2个C3个D4个11函数y=中,自变量x的取值范围是()Ax3Bx3Cx=3Dx312为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:6,1,x,2,1,
4、1若这组数据的中位数是1,则下列结论错误的是()A方差是8B极差是9C众数是1D平均数是1二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,则第2018个正方形的面积为_14抛物线y=(x2)23的顶点坐标是_15如图,在ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_16已知ab1,那么a2b22b_17已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是_(结果保留)18计算=_三、解答题:(本大题共9个小题,
5、共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB是O的直径,BAC=90,四边形EBOC是平行四边形,EB交O于点D,连接CD并延长交AB的延长线于点F(1)求证:CF是O的切线;(2)若F=30,EB=6,求图中阴影部分的面积(结果保留根号和)20(6分)如图,在ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长21(6分)如图,已知一次函数y1=kx+b(k0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点且点A的横坐标和点B的纵坐标
6、都是1求一次函数的解析式;求AOB的面积;观察图象,直接写出y1y1时x的取值范围22(8分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁现在任意取出一把钥匙去开任意一把锁(1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率23(8分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象
7、,回答下列问题:(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FGx轴,则此段时间,甲机器人的速度为 米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米24(10分)如图,正方形OABC绕着点O逆时针旋转40得到正方形ODEF,连接AF,求OFA的度数25(10分)如图,在锐角ABC中,小明进行了如下的尺规作图:分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;作直线PQ分别交边AB、BC于点E、D小明所求作的
8、直线DE是线段AB的 ;联结AD,AD7,sinDAC,BC9,求AC的长26(12分)如图,在ABC中,AB=AC,以AB为直径的O与BC交于点D,过点D作ABD=ADE,交AC于点E(1)求证:DE为O的切线(2)若O的半径为,AD=,求CE的长27(12分)已知抛物线的开口向上顶点为P(1)若P点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当1x2时,求y的取值范围(用含a的代数式表示)(3)若a1,且当0x1时,抛物线上的点到x轴距离的最大值为6,求b的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目
9、要求的)1、A【解析】试题分析:根据y随x的增大而减小得:k0,又kb0,则b0,故此函数的图象经过第二、三、四象限,即不经过第一象限故选A考点:一次函数图象与系数的关系2、B【解析】试题解析:AB=AC,A=30,ABC=ACB=75,AB的垂直平分线交AC于D,AD=BD,A=ABD=30,BDC=60,CBD=1807560=45故选B3、D【解析】根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解【详解】根据题意得:,解得:x-1且x1故选:D【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数4、B【解析】连接DF,根据垂径定理得到
10、, 得到DCF=EOD=30,根据圆周角定理、余弦的定义计算即可【详解】解:连接DF,直径CD过弦EF的中点G,DCF=EOD=30,CD是O的直径,CFD=90,CF=CDcosDCF=12 = ,故选B【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键5、D【解析】,去分母,方程两边同时乘以(x1),得:m+1x=x1,由分母可知,分式方程的增根可能是1当x=1时,m+4=11,m=4,故选D6、A【解析】直接利用相似三角形的判定与性质得出ONC1三边关系,再利用勾股定理得出答案【详解】过点C1作C1Nx轴于点N,过点
11、A1作A1Mx轴于点M,由题意可得:C1NO=A1MO=90,1=2=1,则A1OMOC1N,OA=5,OC=1,OA1=5,A1M=1,OM=4,设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,)故选A【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出A1OMOC1N是解题关键7、D【解析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题【详解】 故选项A错误, 故选项B错误,故选项C错误,故选项D正确,故选:D【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同
12、类项,比较基础,难度不大.8、C【解析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120,故选C【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键9、A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得B=CAD=DAB=30,DE垂直平分AB,DA=DB,B=DAB,AD平分CAB,CAD=DAB, C=90,3CAD=90,CAD=30, AD平分CAB,DEAB,CDAC, CD=D
13、E=BD, BC=3, CD=DE=1考点:线段垂直平分线的性质10、C【解析】利用“角边角”证明APE和CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到EFP是等腰直角三角形,根据全等三角形的面积相等可得APE的面积等于CPF的面积相等,然后求出四边形AEPF的面积等于ABC的面积的一半【详解】AB=AC,BAC=90,点P是BC的中点,APBC,AP=PC,EAP=C=45,APF+CPF=90,EPF是直角,APF+APE=90,APE=CPF,在APE和CPF中,APECPF(ASA),AE=CF,故正确;AEPCFP,同理可证APFBPE,EFP是等腰直角三
14、角形,故错误;APECPF,SAPE=SCPF,四边形AEPF=SAEP+SAPF=SCPF+SBPE=SABC故正确,故选C【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出APE=CPF,从而得到APE和CPF全等是解题的关键,也是本题的突破点11、D【解析】由题意得,x10,解得x1故选D12、A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)6=-1,数据-1出现两次最多,众数为-1,极差=1-(-6)=2,方差= (-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2=2故选A二、填空题:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 宜兴市 中学 2022 2023 学年 中考 数学 考试 模拟 冲刺 解析
限制150内