江苏省泰州市泰兴市西城达标名校2022-2023学年中考数学押题卷含解析.doc
《江苏省泰州市泰兴市西城达标名校2022-2023学年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州市泰兴市西城达标名校2022-2023学年中考数学押题卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,小明从A处出发沿北偏西30方向行走至B处,又沿南偏西50方向行走至C处,此时再沿与出发时一致的方向行走至D处,则BCD的度数为() A100B80C50D202下列命题中,真命题是(
2、)A如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离3下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A1个 B2个 C3个 D4个4某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A2人B16人C20人D40人5宾馆有50间房
3、供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的每间房每天支出20元的费用当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有()A(x20)(50)10890Bx(50)502010890C(180+x20)(50)10890D(x+180)(50)5020108906如图,CD是O的弦,O是圆心,把O的劣弧沿着CD对折,A是对折后劣弧上的一点,CAD=100,则B的度数是() A100B80C60D507下列图形中既是中心对称图形又是轴对称图形的是( )ABCD8估算的值在(
4、)A3和4之间B4和5之间C5和6之间D6和7之间9如图,已知AOB=70,OC平分AOB,DCOB,则C为()A20B35C45D7010一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确11一个几何体的三视图如图所示,那么这个几何体是( )ABCD12下列图形中,可以看作中心对称图形的是( )ABCD二、填空题
5、:(本大题共6个小题,每小题4分,共24分)13如图,在平面直角坐标系中,直线y3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_14如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cosEFC的值是 15如图,在ABC中,AB=AC=2,BAC=120,点D、E都在边BC上,DAE=60若BD=2CE,则DE的长为_.16图,A,B是反比例函数y=图象上的两点,过点A作ACy轴,垂足为C,AC交OB于点D若D为OB的中点,AOD的面积为3,则k的值为_17如图,线段AB=1
6、0,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_.18有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在ABC中,B90,AB4,BC1在BC上求作一点P,使PA+PBBC;(尺规作图,不写作法,保留作图痕迹)求BP的长20(6分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图(1)在图1中,过点O作AC的平行线;
7、(2)在图2中,过点E作AC的平行线21(6分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(4x4),解决下列问题:当点G与点D重合时,求平移距离m的值;用含x的式子表示平移距离m,并求m的最大值;(3)如图2,
8、过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD是否存在点F,使FDP与FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由22(8分)已知抛物线y=x24x+c经过点A(2,0)(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C若B、C都在抛物线上,求m的值;若点C在第四象限,当AC2的值最小时,求m的值23(8分)(1)解方程:x25x6=0;(2)解不等式组:24(10分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作O交AB于点D,交AC于点G,直线DF是O的切线,D为切点,交CB的延长线
9、于点E(1)求证:DFAC;(2)求tanE的值25(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率26(12分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每
10、天每千克价格上涨0.1元设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?27(12分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲50乙60(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于
11、100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】解:如图所示:由题意可得:1=30,3=50,则2=30,故由DCAB,则4=30+50=80故选B点睛:此题主要考查了方向角的定义,正确把握定义得出3的度数是解题关键2、D【解析】根据两圆的位置关系、直线和圆的位置关系判断即可【详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;
12、C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题; 故选:D【点睛】本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当dR+r时两圆外离;当d=R+r时两圆外切;当R-rdR+r(Rr)时两圆相交;当d=R-r(Rr)时两圆内切;当0dR-r(Rr)时两圆内含3、C【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称
13、图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4、C【解析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值【详解】400人.故选C【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值5、C【解析】设房价比定价180元増加x元,根据利润=房价的净利润入住的房同数可得.【详解】解:设房价比定价180元增加x元,根据题意,得(180+x20)(50)1故选:C【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.6、B【解析】试题分析:如图,翻折ACD,点A落在A处,可知A=A=
14、100,然后由圆内接四边形可知A+B=180,解得B=80.故选:B7、C【解析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.8、C【解析】由可知56,即可解出.【详解】56,故选C.【点睛】此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.9、B【解析】解:OC
15、平分AOB,AOC=BOC=AOB=35,CDOB,BOC=C=35,故选B10、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线
16、MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大11、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱故选C12、B【解析】根据中心对称图形的概念求解【详解】解:A、不是中
17、心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误故选:B【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】作DHx轴于H,如图,当y=0时,-3x+3=0,解得x=1,则A(1,0),当x=0时,y=-3x+3=3,则B(0,3),四边形ABCD为正方形,AB=AD,BAD=90,BAO+DAH=90,而BAO+ABO=90,ABO=DAH,在ABO和DAH中 ABODAH,AH=OB=3,DH=O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 泰州市 泰兴市 西城 达标 名校 2022 2023 学年 中考 数学 押题 解析
限制150内