江西省宜春市昌黎实验学校2023届高考全国统考预测密卷数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《江西省宜春市昌黎实验学校2023届高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省宜春市昌黎实验学校2023届高考全国统考预测密卷数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则关于的方程所表示的曲线是( )A长轴在轴上的椭圆B长轴在轴上的椭圆C实轴在轴上的双曲线D实轴在轴上的双曲线2已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分
2、开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为( )ABCD3M、N是曲线y=sinx与曲线y=cosx的两个不同的交点,则|MN|的最小值为()ABCD24已知数列是公差为的等差数列,且成等比数列,则( )A4B3C2D15如图是二次函数的部分图象,则函数的零点所在的区间是( )ABCD6已知,则的最小值为( )ABCD7已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( )ABCD8若复数满足,则()ABCD9为得到的图象,只需要将的图象( )A向左平移个
3、单位 B向左平移个单位C向右平移个单位 D向右平移个单位10的展开式中含的项的系数为( )AB60C70D8011如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )ABCD12tan570=( )AB-CD二、填空题:本题共4小题,每小题5分,共20分。13函数在区间上的值域为_.14设,分别是定义在上的奇函数和偶函数,且,则_15已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是_.16从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社
4、区服务的日期不相邻,那么不同的安排种数为_.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.18(12分)已知函数.(1)解不等式;(2)若函数的最小值为,求的最小值.19(12分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为. (1)求的方程;(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是
5、否为定值,并说明理由.20(12分)设数列,其前项和,又单调递增的等比数列, , .()求数列,的通项公式;()若 ,求数列的前n项和,并求证:.21(12分)已知正实数满足 .(1)求 的最小值.(2)证明:22(10分)的内角、所对的边长分别为、,已知.(1)求的值;(2)若,点是线段的中点,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据条件,方程即,结合双曲线的标准方程的特征判断曲线的类型【详解】解:k1,1+k0,k2-10,方程,即,表示实轴在y轴上的双曲线,故选C【点睛】本题考查双曲线的标准
6、方程的特征,依据条件把已知的曲线方程化为是关键2、D【解析】根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.3、C【解析】两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=,|x1-x2|=,|y1-y2|=|sinx1-
7、cosx2|=+=,|MN|=.故选C.4、A【解析】根据等差数列和等比数列公式直接计算得到答案.【详解】由成等比数列得,即,已知,解得.故选:.【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.5、B【解析】根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.6、B【解析】 ,选B7、A【解析】由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得
8、到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.8、C【解析】把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解【详解】解:由,得,故选C【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题9、D【解析】试题分析:因为,所以为得到的图象,只需要将的图象向右平移个单位;故选D考点:三角函数的图像变换10、B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省 宜春市 昌黎 实验学校 2023 高考 全国 统考 预测 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内