江苏省宿迁市沭阳县2023届高考适应性考试数学试卷含解析.doc
《江苏省宿迁市沭阳县2023届高考适应性考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省宿迁市沭阳县2023届高考适应性考试数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的部分图象大致是( )ABCD2水平放置的,用斜二测画法作出的直观图是如图所示的,其中 ,则绕AB
2、所在直线旋转一周后形成的几何体的表面积为( )ABCD3已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称4体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是( )A3B4C5D65命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )ABCD6已知实数,则的大小关系是()ABCD7已知曲线且过定点,若且,则的最小值为( ).AB9C5D8 “”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不
3、充分又不必要条件9框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,则图中空白框中应填入( )A,BC,D,10设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD11已知变量的几组取值如下表:12347若与线性相关,且,则实数( )ABCD12已知双曲线),其右焦点F的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )AB2CD二、填空
4、题:本题共4小题,每小题5分,共20分。13若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为_.14若满足约束条件,则的最小值是_,最大值是_.15已知点是直线上的动点,点是抛物线上的动点.设点为线段的中点,为原点,则的最小值为_.16设Sn为数列an的前n项和,若an0,a1=1,且2Sn=an(an+t),nN*,则S10=_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标平面中,已知的顶点,为平面内的动点,且.(1)求动点的轨迹的方程;(2)设过点且不垂直于轴
5、的直线与交于,两点,点关于轴的对称点为,证明:直线过轴上的定点.18(12分)已知函数.(1)求不等式的解集;(2)若正数、满足,求证:.19(12分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查调查后,就顾客“购物体验”的满意度统计如下:满意不满意男4040女8040(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?(2)为答谢顾客,该商场对某款价格为100元/件的商品开展促销活动据统计,在此期间顾客购买该商品的支付情况如下:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有1/3的顾客按4折支付,1/2的顾客按6
6、折支付,1/6的顾客按8折支付将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820(12分)已知函数,函数,其中,是的一个极值点,且.(1)讨论的单调性(2)求实数和a的值(3)证明21(12分)已知中,角,的对边分别为,已知向量,且(1)求角的大小;(2)若的面积为,求22(10分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每
7、小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【详解】,函数是奇函数,排除,时,时,排除,当时, 时,排除,符合条件,故选C.【点睛】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.2、B【解析】根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得,绕AB所在直线旋转一周后形成的
8、几何体是两个相同圆锥的组合体,它的表面积为.故选:【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.3、C【解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.4、B【解析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“”“”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”可知需要的次数为4次.故选
9、:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.5、A【解析】分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.6、B【解析】根据,利用指数函数对数函数的单调性即可得出【详解】解:,故选:B【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题7、A【解析】根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 宿迁市 沭阳县 2023 高考 适应性 考试 数学试卷 解析
限制150内