江苏省连云港市海庆中学2023届高三下学期一模考试数学试题含解析.doc
《江苏省连云港市海庆中学2023届高三下学期一模考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省连云港市海庆中学2023届高三下学期一模考试数学试题含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则的值等于( )ABCD2已知直线,则“”是“”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件3著名的斐波那契数列:1,1,2,3,5,8,满足,若,则( )A
2、2020B4038C4039D40404已知函数,则( )A2B3C4D55已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D10956刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为( )ABCD7若x,y满足约束条件且的最大
3、值为,则a的取值范围是( )ABCD8已知,若,则正数可以为( )A4B23C8D179复数满足 (为虚数单位),则的值是()ABCD10要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( )ABCD11 “”是“,”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件12我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,那么在不超过18的素数中随机选取两个不
4、同的数,其和等于16的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若满足,则目标函数的最大值为_.14在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为_.15已知函数,对于任意都有,则的值为_.16函数的图像如图所示,则该函数的最小正周期为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.18(12分)已知凸边形的面积为1,边长,其内部一点到边的距离分别为.求证:.19(12分)如图在四边形中,为中点,.(1)求;(2)若
5、,求面积的最大值.20(12分)在ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求ABC的面积21(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为 (为参数),直线与曲线分别交于两点(1)写出曲线的直角坐标方程和直线的普通方程;(2)若点的极坐标为,求的值22(10分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.参考答案一、选择题:本题共12小题,每
6、小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由余弦公式的二倍角可得,再由诱导公式有,所以【详解】由余弦公式的二倍角展开式有又故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题2、C【解析】先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为C.【点睛】判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题
7、,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q的即不充分也不必要条件判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系3、D【解析】计算,代入等式,根据化简得到答案.【详解】,故,故.故选:.【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.4、A【解析】根据分段函数直接计算得到答案.【详解】因为所以.故选:.【点睛】本题考查了分段函数计算,意在考查学生的计算能力.5、D【解析】确定中前35项里两个数列中的项数,数列中第35项为70,这时可
8、通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的6、A【解析】设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【点睛】本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 连云港市 中学 2023 届高三 下学 期一模 考试 数学试题 解析
限制150内