江苏省睢宁高级中学2022-2023学年高三考前热身数学试卷含解析.doc
《江苏省睢宁高级中学2022-2023学年高三考前热身数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省睢宁高级中学2022-2023学年高三考前热身数学试卷含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知某几何体的三视图如图所示,则该几何体的体积是( )AB64CD322袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是(
2、 )ABCD3中国古代数学著作孙子算经中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( )ABCD4盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( )ABCD5一个几何体的三视图如图所示,则该几何体的体积为( )ABCD6某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是( )A4
3、5B50C55D607已知集合A=x|y=lg(4x2),B=y|y=3x,x0时,AB=( )Ax|x2 Bx|1x2 Cx|1x2 D8若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD9若实数x,y满足条件,目标函数,则z 的最大值为()AB1C2D010记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围( )ABCD11阿基米德(公元前287年公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的
4、轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )ABCD12若函数函数只有1个零点,则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若函数有3个不同的零点x1,x2,x3(x1x2x3),则的取值范围是_14(5分)有一道描述有关等差与等比数列的问题:有四个和尚在做法事之前按身高从低到高站成一列,已知前三个和尚的身高依次成等差数列,后三个和尚的身高依次成等比数列,且前三个和尚的身高之和为cm,中间两个和尚的身高之和为cm,则最高的和尚的身高是_ cm15在数列中,则数列的通项公式_.16由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响
5、,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)讨论的单调性;(2)当时,求的取值范围.18(12分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.19(12分)如图,已知平面与直线均垂直于所在平面,且 (1)求证:平面; (2)若,求与平面所成角的正弦值.20(12分)已知函数u(x)xlnx,v(x)x1,mR(1)令m2,求函数h(x)的单调区间;(2
6、)令f(x)u(x)v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值21(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.(1)求与的极坐标方程(2)若与交于点A,与交于点B,求的最大值.22(10分)在直角坐标系中,曲线的参数方程为(为参数,以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,曲线的极坐标方程为(1)求曲线的极坐标方程和曲线的普通方程;(2)设射线与曲线交于不同于极点的点,与曲线交于不同于极点的点,求线段的长参考答案一、选择题:本题共12小题,每小题5分,共60分。
7、在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.2、C【解析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概
8、率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:【点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题3、C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.4、B【解析】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综
9、合分析,概念理解,数学运算的能力,属于中档题.5、A【解析】根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题6、D【解析】根据频率分布直方图中频率小矩形的高组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)200.30,样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题7、B【解析】试题分析:由集合A中的函数,得到,解得:,
10、集合,由集合B中的函数,得到,集合,则,故选B考点:交集及其运算8、C【解析】利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.9、C【解析】画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为 故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.10、D【解析】做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有
11、3个交点,则在上有4个不同的交点,数形结合即可求解.【详解】作出函数的图象如图所示,由图可知 方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.11、D【解析】设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 睢宁 高级中学 2022 2023 学年 考前 热身 数学试卷 解析
限制150内