江西省高安市高安中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc
《江西省高安市高安中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省高安市高安中学2022-2023学年高考数学考前最后一卷预测卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则“直线与直线垂直”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2设,则的大小关系是( )ABCD3设为等差数列的前项和,若,则ABCD4抛
2、物线的焦点为,点是上一点,则( )ABCD5若的展开式中含有常数项,且的最小值为,则( )ABCD6在三棱锥中,点到底面的距离为2,则三棱锥外接球的表面积为( )ABCD7将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是( )ABCD8已知实数,则下列说法正确的是( )ABCD9数列的通项公式为则“”是“为递增数列”的( )条件A必要而不充分B充要C充分而不必要D即不充分也不必要10已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4. 给出下列命题:;,其中真命题的个数为( )A1B2C3D411已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),
3、则双曲线的离心率为( )AB3CD12某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A互联网行业从业人员中90后占一半以上B互联网行业中从事技术岗位的人数超过总人数的C互联网行业中从事运营岗位的人数90后比80前多D互联网行业中从事技术岗位的人数90后比80后多二、填空题:本题共4小题,每小题5分,共20分。13已知,为虚数单位,且,则=_.14已知集合,.若,则实数a的值是_.15已知数列的前项
4、和为,且满足,则数列的前10项的和为_.16函数的图象向右平移个单位后,与函数的图象重合,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩阵,.求矩阵;求矩阵的特征值.18(12分)在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求B;(2)若,AD为BC边上的中线,当的面积取得最大值时,求AD的长.19(12分)设函数,直线与函数图象相邻两交点的距离为.()求的值;()在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.20(12分)已知函数,()当时,证明;()已知点,点,设函数,当时,试判断的零点个数21(12分)为提
5、供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99用最小二乘法求与的回归直线方程;叫做篮球馆月惠值,根据的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,22(10分)在平面直角坐标系
6、中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.(1)求曲线的参数方程;(2)求面积的最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【点睛】本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两
7、直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.2、A【解析】选取中间值和,利用对数函数,和指数函数的单调性即可求解.【详解】因为对数函数在上单调递增,所以,因为对数函数在上单调递减,所以,因为指数函数在上单调递增,所以,综上可知,.故选:A【点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.3、C【解析】根据等差数列的性质可得,即,所以,故选C4、B【解析】根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,
8、考查基本分析求解能力,属基础题.5、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.6、C【解析】首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面
9、于,连接交于,连接,为的中点由球的性质可知:平面,且设,在中,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.7、D【解析】由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省 高安市 高安 中学 2022 2023 学年 高考 数学 考前 最后 一卷 预测 解析
限制150内