《河北省廊坊市香河县2022-2023学年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省廊坊市香河县2022-2023学年中考二模数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )Aab0Bab 0CD2如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90,点O的对应点B恰好落在
2、双曲线y=(x0)上,则k的值为( )A2B3C4D63下列现象,能说明“线动成面”的是()A天空划过一道流星B汽车雨刷在挡风玻璃上刷出的痕迹C抛出一块小石子,石子在空中飞行的路线D旋转一扇门,门在空中运动的痕迹4如图,ABCD,FH平分BFG,EFB58,则下列说法错误的是()AEGD58BGFGHCFHG61DFGFH5九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问
3、走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是ABCD6在数轴上表示不等式2(1x)4的解集,正确的是()ABCD7如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BCx轴,OAB90,点C(3,2),连接OC以OC为对称轴将OA翻折到OA,反比例函数y的图象恰好经过点A、B,则k的值是()A9BCD383的相反数是( )A3B3CD9若一组数据2,3,5,7的众数为7,则这组数据的中位数为( )A2B3C5D710下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于
4、不同的x,下列关于年龄的统计量不会发生改变的是( )A众数、中位数B平均数、中位数C平均数、方差D中位数、方差二、填空题(本大题共6个小题,每小题3分,共18分)11如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取ABC和DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取A1B1C1和D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去,则正六角星形A4F4B4D4C4E4的面积为_12如图,的半径为1,正六边形内接于,则图中阴影部分图形的面积和为_(结果保留)13如图,已知P是线段A
5、B的黄金分割点,且PAPB若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_S2.(填“”“=”“ ”)14如图,在RtABC中,A=90,ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足若DC=2,AD=1,则BE的长为_15已知数据x1,x2,xn的平均数是,则一组新数据x1+8,x2+8,xn+8的平均数是_.16如图,反比例函数(x0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则OEF的面积的值为 三、解答题(共8题,共72分)17(8分)如图,儿童游乐场有一项射击游戏从O处发射小球,将球投入正方形篮筐DAB
6、C正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3)小球按照抛物线yx2+bx+c 飞行小球落地点P 坐标(n,0)(1)点C坐标为 ;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数yx2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围18(8分)先化简再求值:(a),其中a2cos30+1,btan4519(8分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图
7、书共1000本;科普类图书不少于600本;(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0a5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?20(8分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30,他又继续走
8、下台阶到达C处,测得树的顶端的仰角是60,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45,已如A点离地面的高度AB4米,BCA30,且B、C、D 三点在同一直线上(1)求树DE的高度;(2)求食堂MN的高度21(8分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点点D是直线AC上方抛物线上任意一点(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且SPCD=2SPAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AMOD,CNOD,垂足分别为M、N当AM+CN的值最大时,求点D的坐标22(10分)如图,在
9、ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB若ABC=70,则NMA的度数是 度若AB=8cm,MBC的周长是14cm求BC的长度;若点P为直线MN上一点,请你直接写出PBC周长的最小值23(12分)某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图请结合统计图,回答下列问题:(1)这次调查中,一共调查了多少名学生?(2)求出扇形统计图中“B:跳绳”所对扇形的圆心角的度数,并补全条形图;(3)若该校有2000名学
10、生,请估计选择“A:跑步”的学生约有多少人?24如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】本题要先观察a,b在数轴上的位置,得b-10a1,然后对四个选项逐一分析【详解】A、因为b-10a1,所以|b|a|,所以a+b0,故选项A错误;B、因为b0a,所以ab0,故选项B错误;C、因为b-10a1,所以+0,故选项C正确;D、因为b-1
11、0a1,所以-0,故选项D错误故选C【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数2、B【解析】作ACy轴于C,ADx轴,BDy轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90,点O的对应B点,所以相当是把AOC绕点A逆时针旋转90得到ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值【详解】作ACy轴于C,ADx轴,BDy轴,它们相交于D,如图,A点坐标为(1,1),AC=1,OC=1AO绕点A逆时针旋转90,点O的对应B点,即把AOC绕点A逆时针旋转9
12、0得到ABD,AD=AC=1,BD=OC=1,B点坐标为(2,1),k=21=2故选B【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k也考查了坐标与图形变化旋转3、B【解析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:A、天空划过一道流星说明“点动成线”,故本选项错误.B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,故本选项正确.C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,故本选项错误.D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,故本选项
13、错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.4、D【解析】根据平行线的性质以及角平分线的定义,即可得到正确的结论【详解】解:,故A选项正确;又故B选项正确;平分,故C选项正确;,故选项错误;故选【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等5、B【解析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:故选B点睛:本题考查了一元一次方程的应用找准等量关系,列方程是关键6、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解
14、集,然后得出在数轴上表示不等式的解集 2(1 x)4去括号得:224移项得:2x2,系数化为1得:x1,故选A “点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变7、C【解析】设B(,2),由翻折知OC垂直平分AA,AG2EF,AG2AF,由勾股定理得OC,根据相似三角形或锐角三角函数可求得A(,),根据反比例函数性质kxy建立方程求k【详解】如图,过点C作CDx轴于D,过点A作AGx轴于G,连接AA交射线OC于E,过E作EFx轴于F,设B(,2),在RtOCD中,OD3,CD2,ODC90,OC,由翻
15、折得,AAOC,AEAE,sinCOD,AE,OAE+AOE90,OCD+AOE90,OAEOCD,sinOAEsinOCD,EF,cosOAEcosOCD,EFx轴,AGx轴,EFAG,A(,),k0,故选C【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A的坐标8、A【解析】试题分析:根据相反数的概念知:1的相反数是1故选A【考点】相反数9、C【解析】试题解析:这组数据的众数为7,x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1故选C考点:众数;中位数.10、A【解
16、析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边
17、长的,正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的同理正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的,正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的12、.【解析】连接OA,OB,OC,则根据正六边形内接于可知阴影部分的面积等于扇形OAB的面积,计算出扇形OAB的面积即可.【详解】解:如图所示,连接OA,OB,OC,正六边形内接于AOB=60,四边形OABC是菱形, AG=GC,OG=BG,AGO=BGCAGOBGC.AGO的面积=BGC的面积弓形DE的面积=弓形AB的面积阴影部分的面积=弓形DE
18、的面积+ABC的面积=弓形AB的面积+AGB的面积+BGC的面积=弓形AB的面积+AGB的面积+AGO的面积=扇形OAB的面积= = 故答案为.【点睛】本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.13、=【解析】黄金分割点,二次根式化简【详解】设AB=1,由P是线段AB的黄金分割点,且PAPB,根据黄金分割点的,AP=,BP=S1=S114、 【解析】DE是BC的垂直平分线,DB=DC=2,BD是ABC的平分线,A=90,DEBC,DE=AD=1,BE=,故答案为 点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等
19、是解题的关键15、【解析】根据数据x1,x2,xn的平均数为=(x1+x2+xn),即可求出数据x1+1,x2+1,xn+1的平均数【详解】数据x1+1,x2+1,xn+1的平均数=(x1+1+x2+1+xn+1)=(x1+x2+xn)+1=+1故答案为+1【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标16、【解析】试题分析:如图,连接OBE、F是反比例函数(x0)的图象上的点,EAx轴于A,FCy轴于C,SAOE=SCOF=1=AE=BE,SBOE=SAOE=,SBOC=SAOB=1SBOF
20、=SBOCSCOF=1=F是BC的中点SOEF=S矩形AOCBSAOESCOFSBEF=6=三、解答题(共8题,共72分)17、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)n 【解析】(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N的坐标代入y=x2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y3,当x=3时y2,据此列出关于n的不等式组,解之可得【详解】(1)A(2,2)
21、,B(3,2),D(2,3),ADBC1, 则点 C(3,3),故答案为:(3,3);(2)把(0,0)(n,0)代入 yx2+bx+c 得: ,解得:,抛物线解析式为 yx2+nx(x)2+,顶点 N 坐标为(,);(3)由(2)把 x代入 yx2()2 ,抛物线的顶点在函数 yx2的图象上运动;(4)根据题意,得:当 x2 时 y3,当 x3 时 y2, 即,解得:n【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力18、;【解析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a和b的值,
22、代入计算可得【详解】原式(),当a2cos30+12+1+1,btan451时,原式【点睛】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值19、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.【解析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意
23、列出方程,求解即可 (2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.518=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0a5),由题意得,解得:600t800
24、,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0a3时,3-a0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3a5时,3-a0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值
25、问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解20、(1)12米;(2)(2+8)米【解析】(1)设DEx,先证明ACE是直角三角形,CAE60,AEC30,得到AE16,根据EF=8求出x的值得到答案;(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用NDP45得到NP,即可求出MN.【详解】(1)如图,设DEx,ABDF4,ACB30,AC8,ECD60,ACE是直角三角形,AFBD,CAF30,CAE60,AEC30,AE16,RtAEF中,EF8,即x48,解得x12,树DE的高度为12米;(2)延长NM交DB延长线于点P,则
26、AMBP6,由(1)知CDCEAC4,BC4,PDBP+BC+CD6+4+46+8,NDP45,且NPD90,NPPD6+8,NMNPMP6+842+8,食堂MN的高度为(2+8)米【点睛】此题是解直角三角形的实际应用,考查直角三角形的性质,30角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.21、(1)y=x2x+3;(2)点P的坐标为(,1);(3)当AM+CN的值最大时,点D的坐标为(,)【解析】(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根
27、据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P作PEx轴,垂足为点E,则APEACO,由PCD、PAD有相同的高且SPCD=2SPAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;(3)连接AC交OD于点F,由点到直线垂线段最短可找出当ACOD时AM+CN取最大值,过点D作DQx轴,垂足为点Q,则DQOAOC,根据相似三角形的性质可设点D的坐标为(3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论【详解】(1)直线y=x+3与x轴、y轴分别交
28、于A、C两点,点A的坐标为(4,0),点C的坐标为(0,3)点B在x轴上,点B的横坐标为,点B的坐标为(,0),设抛物线的函数关系式为y=ax2+bx+c(a0),将A(4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得: ,抛物线的函数关系式为y=x2x+3;(2)如图1,过点P作PEx轴,垂足为点E,PCD、PAD有相同的高,且SPCD=2SPAD,CP=2AP,PEx轴,COx轴,APEACO,AE=AO=,PE=CO=1,OE=OAAE=,点P的坐标为(,1);(3)如图2,连接AC交OD于点F,AMOD,CNOD,AFAM,CFCN,当点M、N、F重合时,AM+C
29、N取最大值,过点D作DQx轴,垂足为点Q,则DQOAOC,设点D的坐标为(3t,4t)点D在抛物线y=x2x+3上,4t=3t2+t+3,解得:t1=(不合题意,舍去),t2=,点D的坐标为(,),故当AM+CN的值最大时,点D的坐标为(,)【点睛】本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(3t,4t)22、(1)50;(2)6;1 【解析】试题分析:(1)根据
30、等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出MBC的周长=AC+BC,再代入数据进行计算即可得解;当点P与M重合时,PBC周长的值最小,于是得到结论试题解析:解:(1)AB=AC,C=ABC=70,A=40AB的垂直平分线交AB于点N,ANM=90,NMA=50故答案为50;(2)MN是AB的垂直平分线,AM=BM,MBC的周长=BM+CM+BC=AM+CM+BC=AC+BCAB=8,MBC的周长是1,BC=18=6;当点P与M重合时,PBC周长的值最小,理由:PB+PC=PA+PC,PA+PCAC,P与
31、M重合时,PA+PC=AC,此时PB+PC最小,PBC周长的最小值=AC+BC=8+6=123、 (1)一共调查了300名学生;(2) 36,补图见解析;(3)估计选择“A:跑步”的学生约有800人.【解析】(1)由跑步的学生数除以占的百分比求出调查学生总数即可;(2)求出跳绳学生占的百分比,乘以360求出占的圆心角度数,补全条形统计图即可;(3)利用跑步占的百分比,乘以2000即可得到结果【详解】(1)根据题意得:12040%=300(名),则一共调查了300名学生;(2)根据题意得:跳绳学生数为300(120+60+90)=30(名),则扇形统计图中“B:跳绳”所对扇形的圆心角的度数为360=36,;(3)根据题意得:200040%=800(人),则估计选择“A:跑步”的学生约有800人【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键24、(1)见解析;(2)见解析;(3)见解析,.【解析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
限制150内