《江西省顶级名校2023届高考数学三模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省顶级名校2023届高考数学三模试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设等比数列的前项和为,若,则的值为( )ABCD2已知命题:,则为( )A,B,C,D,3的图象如图所示,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是( )ABCD4不等式组表示的平面区域为,则( )A,B,C,D,5已知
2、是等差数列的前项和,若,设,则数列的前项和取最大值时的值为( )A2020B20l9C2018D20176设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D7已知函数,则在上不单调的一个充分不必要条件可以是( )ABC或D8设为定义在上的奇函数,当时,(为常数),则不等式的解集为( )ABCD9函数在区间上的大致图象如图所示,则可能是( )ABCD10已知复数,则的虚部为( )A1BC1D11一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的
3、体积为( )ABCD12若直线经过抛物线的焦点,则( )ABC2D二、填空题:本题共4小题,每小题5分,共20分。13某部门全部员工参加一项社会公益活动,按年龄分为三组,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,若组中甲、乙二人均被抽到的概率是,则该部门员工总人数为_.14设,满足约束条件,若的最大值是10,则_.15展开式中项的系数是_16已知,为虚数单位,且,则=_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜
4、率.18(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.19(12分)已知凸边形的面积为1,边长,其内部一点到边的距离分别为.求证:.20(12分)已知,.(1)当时,证明:;(2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.21(12分)已知函数,()若,求的取值范围;()若,对,都有不等式恒成立,求的取值范围22(10分) 已知函数,()当时,求曲线在处的切线方程; ()求函数在上的最小值;()若函数,当时,的最大值为,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60
5、分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【详解】设等比数列的公比为,因此,.故选:C.【点睛】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.2、C【解析】根据全称量词命题的否定是存在量词命题,即得答案.【详解】全称量词命题的否定是存在量词命题,且命题:,.故选:.【点睛】本题考查含有一个量词的命题的否定,属于基础题.3、B【解析】根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果.【详解】由图象可得
6、,函数的最小正周期为,则,取,则,可得,当时,.故选:B.【点睛】本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.4、D【解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中 ,设,则,的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点
7、睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.5、B【解析】根据题意计算,计算,得到答案.【详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.6、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率
8、大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来7、D【解析】先求函数在上不单调的充要条件,即在上有解,即可得出结论.【详解】,若在上不单调,令,则函数对称轴方程为在区间上有零点(可以用二分法求得).当时,显然不成立;当时,只需或,解得或.故选:D.【点睛】本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.8、D【解析】由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,且时,单调递增,所以在上单调递
9、增,因为,故有,解得.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.9、B【解析】根据特殊值及函数的单调性判断即可;【详解】解:当时,无意义,故排除A;又,则,故排除D;对于C,当时,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.10、A【解析】分子分母同乘分母的共轭复数即可.【详解】,故的虚部为.故选:A.【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.11、B【解析】由三视图确定原几何体是正三棱柱,由此可求得体积【详解】由题意原几何体是
10、正三棱柱,故选:B【点睛】本题考查三视图,考查棱柱的体积解题关键是由三视图不愿出原几何体12、B【解析】计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、60【解析】根据样本容量及各组人数比,可求得C组中的人数;由组中甲、乙二人均被抽到的概率是可求得C组的总人数,即可由各组人数比求得总人数.【详解】三组人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,则三组抽取人数分别.设组有人,则组中甲、乙二人均被抽到的概率,解得.该部门员工总共有人.故答案为:60.【
11、点睛】本题考查了分层抽样的定义与简单应用,古典概型概率的简单应用,由各层人数求总人数的应用,属于基础题.14、【解析】画出不等式组表示的平面区域,数形结合即可容易求得结果.【详解】画出不等式组表示的平面区域如下所示:目标函数可转化为与直线平行,数形结合可知当且仅当目标函数过点,取得最大值,故可得,解得.故答案为:.【点睛】本题考查由目标函数的最值求参数值,属基础题.15、-20【解析】根据二项式定理的通项公式,再分情况考虑即可求解【详解】解:展开式中项的系数:二项式由通项公式当时,项的系数是,当时,项的系数是,故的系数为;故答案为:【点睛】本题主要考查二项式定理的应用,注意分情况考虑,属于基础
12、题16、4【解析】解:利用复数相等,可知由有三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由抛物线定义可知,解得,故抛物线的方程为;(2)设直线:,联立,利用韦达定理算出的中点,又,所以直线的方程为,求出,利用求解即可.【详解】(1)设的准线为,过作于,则由抛物线定义,得,因为到的距离比到轴的距离大1,所以,解得,所以的方程为(2)由题意,设直线方程为,由消去,得,设,则,所以,又因为为的中点,点的坐标为,直线的方程为,令,得,点的坐标为,所以,解得,所以直线的斜率为.【点睛】本题主要考查抛物线的定义,直线与抛物线的位置关系等基础知识,考查学生的
13、运算求解能力.涉及抛物线的弦的中点,斜率问题时,可采用韦达定理或“点差法”求解.18、 (1) .(2) 【解析】(1)根据极坐标与直角坐标互化公式,以及消去参数,即可求解;(2)设两点对应的参数分别为,将直线的参数方程代入曲线方程,结合根与系数的关系,即可求解.【详解】(1)对于曲线的极坐标方程为,可得,又由,可得,即,所以曲线的普通方程为.由直线的参数方程为(为参数),消去参数可得,即直线的方程为,即.(2)设两点对应的参数分别为,将直线的参数方程(为参数)代入曲线中,可得.化简得:,则.所以.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及直线的参数方程的应
14、用,着重考查了推理与运算能力,属于基础题.19、证明见解析【解析】由已知,易得,所以利用柯西不等式和基本不等式即可证明.【详解】因为凸边形的面积为1,所以,所以(由柯西不等式得)(由均值不等式得)【点睛】本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.20、(1)证明见解析;(2).【解析】(1)令,求导,可知单调递增,且,因而在上存在零点,在此取得最小值,再证最小值大于零即可.(2)根据题意得到在点处的切线的方程,再设直线与相切于点, 有,即,再求得在点处的切线直线的方程为 由可得,即,根据,转化为,令,转化为要使得在上存在零点,则只需,求解
15、.【详解】(1)证明:设,则,单调递增,且,因而在上存在零点,且在上单调递减,在上单调递增,从而的最小值为.所以,即.(2),故,故切线的方程为设直线与相切于点,注意到,从而切线斜率为,因此,而,从而直线的方程也为 由可知,故,由为正整数可知,所以,令,则,当时,为单调递增函数,且,从而在上无零点;当时,要使得在上存在零点,则只需,因为为单调递增函数,所以;因为为单调递增函数,且,因此;因为为整数,且,所以.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.21、();().【解析】()由题意不等式化为,利用分类讨论法去掉绝对值求出不等式的解集即可;
16、()由题意把问题转化为,分别求出和,列出不等式求解即可【详解】()由题意知,若,则不等式化为,解得;若,则不等式化为,解得,即不等式无解;若,则不等式化为,解得,综上所述,的取值范围是;()由题意知,要使得不等式恒成立,只需,当时,因为,所以当时,即,解得,结合,所以的取值范围是.【点睛】本题考查了绝对值不等式的求解问题,含有绝对值的不等式恒成立应用问题,以及绝对值三角不等式的应用,考查了分类讨论思想,是中档题含有绝对值的不等式恒成立应用问题,关键是等价转化为最值问题,再通过绝对值三角不等式求解最值,从而建立不等关系,求出参数范围.22、()()见解析;()见解析.【解析】试题分析:()由题,
17、所以故,代入点斜式可得曲线在处的切线方程;()由题(1)当时,在上单调递增. 则函数在上的最小值是(2)当时,令,即,令,即(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,由的单调性可得在上的最小值是(iii)当,即时,在上单调递减,在上的最小值是()当时,令,则是单调递减函数. 因为,所以在上存在,使得,即讨论可得在上单调递增,在上单调递减. 所以当时,取得最大值是因为,所以由此可证试题解析:()因为函数,且, 所以,所以所以,所以曲线在处的切线方程是,即()因为函数,所以(1)当时,所以在上单调递增. 所以函数在上的最小值是(2)当时,令,即,所以令,即,所以(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,在上单调递减,在上单调递增,所以在上的最小值是(iii)当,即时,在上单调递减,所以在上的最小值是综上所述,当时,在上的最小值是当时,在上的最小值是当时,在上的最小值是 ()因为函数,所以所以当时,令,所以是单调递减函数. 因为,所以在上存在,使得,即所以当时,;当时,即当时,;当时,所以在上单调递增,在上单调递减. 所以当时,取得最大值是因为,所以因为,所以所以
限制150内