江苏省扬州市邗江区公道中学2022-2023学年高考数学必刷试卷含解析.doc
《江苏省扬州市邗江区公道中学2022-2023学年高考数学必刷试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省扬州市邗江区公道中学2022-2023学年高考数学必刷试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )绕着轴上一点旋转; 沿轴正方向平移;以轴为轴作轴对称;以轴的某一条垂线为轴作轴对称.ABCD2已知向量,则( )ABC()D( )3已知数列是
2、公比为的等比数列,且,若数列是递增数列,则的取值范围为( )ABCD4若集合,则下列结论正确的是( )ABCD5等比数列的前项和为,若,则( )ABCD6九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A10000立方尺 B11000立方尺C12000立方尺 D13000立方尺7已知数列中,(),则等于( )ABCD28
3、已知三棱锥且平面,其外接球体积为( )ABCD9下列函数中,既是奇函数,又在上是增函数的是( )ABCD10若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )ABCD11在长方体中,则直线与平面所成角的余弦值为( )ABCD12若直线经过抛物线的焦点,则( )ABC2D二、填空题:本题共4小题,每小题5分,共20分。13已知数列是等比数列,则_.14某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为_.15已知,且,则的最小值是_.16已知函数的定义域为R,导函数为,若,且,则满足的x的
4、取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,点在直线上,且(1)证明:直线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长18(12分)已知函数.(1)求不等式的解集;(2)若存在实数,使得不等式成立,求实数的取值范围.19(12分)如图,已知平面与直线均垂直于所在平面,且 (1)求证:平面; (2)若,求与平面所成角的正弦值.20(12分)已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于、两点,、分别为线段、的中点,若坐标原点在以为
5、直径的圆上,且,求的取值范围.21(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.22(10分)已知函数(1)若函数在上单调递增,求实数的值;(2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】计算得到,故函数是周期函数,轴对称图形,故正确,根据图像知错误,得到答案.【详解】,当沿轴正方向平移个单位时,重合,故正确;,故,函数关于对称,故正确;根据图像知:不正确;故选:.【点睛】本题考查了根
6、据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.2、D【解析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】向量(1,2),(3,1),和的坐标对应不成比例,故、不平行,故排除A;显然,3+20,故、不垂直,故排除B;(2,1),显然,和的坐标对应不成比例,故和不平行,故排除C;()2+20,故 (),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.3、D【解析】先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,
7、数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.4、D【解析】由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.5、D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,所以,故解得:,从而公比;那么,故选D考点:等比数列6、A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:沿上棱两端向底面作垂面,且使垂面与上棱
8、垂直,则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的 四棱锥的体积 由三视图可知两个四棱锥大小相等,立方丈立方尺故选A【点睛】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键7、A【解析】分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:,(),数列是以3为周期的周期数列,故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.8、A【解析】由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.【详解】由题,因为,所以,设,则由,可得,解得,可将三棱锥还原成如图所示
9、的长方体,则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,所以外接球的体积.故选:A【点睛】本题考查三棱锥的外接球体积,考查空间想象能力.9、B【解析】奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.10、D【解析】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 扬州市 邗江 公道 中学 2022 2023 学年 高考 数学 试卷 解析
限制150内