江西省南昌市南昌县莲塘第一中学2023年高三第二次调研数学试卷含解析.doc
《江西省南昌市南昌县莲塘第一中学2023年高三第二次调研数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省南昌市南昌县莲塘第一中学2023年高三第二次调研数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、分别交于、,设三棱锥的体积为,截面三角形的面积为,则( )A,B,C,D,2如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,
2、则( )A在点F的运动过程中,存在EF/BC1B在点M的运动过程中,不存在B1MAEC四面体EMAC的体积为定值D四面体FA1C1B的体积不为定值3在平行四边形中,若则( )ABCD4若函数有且仅有一个零点,则实数的值为( )ABCD5若复数满足,则( )ABCD6如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是( )A该年第一季度GDP增速由高到低排位第3的是山东省B与去年同期相比,该年第一季度的GDP总量实现了增长C该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D去年同期浙江省的GDP总量超过了4500亿元7若函数在处有极值,则在区间上的最大值为( )AB2C
3、1D38当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是( )ABCD9执行如图所示的程序框图,若输入,则输出的值为( )A0B1CD10某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A8种B12种C16种D20种11某几何体的三视图如图所示,则该几何体的体积为( )AB3CD412抛物线的焦点为,准线为,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是( )
4、ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为_.14已知是定义在上的奇函数,当时,则不等式的解集用区间表示为_15设常数,如果的二项展开式中项的系数为-80,那么_.16已知函数f(x)=axlnxbx(a,bR)在点(e,f(e)处的切线方程为y=3xe,则a+b=_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数.()当时,求不等式的解集;()若函数 的图象与直线所围成的四边形面积大于20,求的取值范围.18(12分)我们称n()元有序实
5、数组(,)为n维向量,为该向量的范数.已知n维向量,其中,2,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为.(1)求和的值;(2)当n为偶数时,求,(用n表示).19(12分)在中,内角的对边分别是,已知(1)求的值;(2)若,求的面积20(12分)在数列中,已知,且,.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.21(12分)已知.() 若,求不等式的解集;(),求实数的取值范围.22(10分)在中,(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
6、要求的。1、A【解析】设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.【详解】如图所示,利用排除法,取与重合时的情况.不妨设,延长到,使得,则,由余弦定理得,又,当平面平面时,排除B、D选项;因为,此时,当平面平面时,排除C选项.故选:A.【点睛】本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题2、C【解析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,/而与平面相交,故可知与平面相交,所以不存在EF/BC1B错误,如图,作由又平面,所以平面又平面,
7、所以由/,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由/,平面,平面所以/平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由/,平面,平面所以/平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.3、C【解析】由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示,平行四边形中, ,,,因为,所以,,所以,故选C.【点睛】本
8、题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:()平行四边形法则(平行四边形的对角线分别是两向量的和与差);()三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).4、D【解析】推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.【详解】,则,所以,函数的图象关于直线对称.若函数的零点不为,则该函数的零点必成对出现,不合题意.所以,即,解得或.当时,令,得,作出函数与函数的图象如下图所示:此时,函数与函数的图象有三个交点,不合乎题意;当时,当且仅当时,等号成立,则函数有且只有一个零点.综上所述,.故选:D.
9、【点睛】本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.5、B【解析】由题意得,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.6、D【解析】根据折线图、柱形图的性质,对选项逐一判断即可.【详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.7、B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省 南昌市 南昌县 第一 中学 2023 年高 第二次 调研 数学试卷 解析
限制150内