《河北省廊坊市霸州市2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省廊坊市霸州市2022-2023学年中考适应性考试数学试题含解析.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1把多项式ax32ax2+ax分解因式,结果正确的是()Aax(x22x)Bax2(x2)Cax(x+1)(x1)Dax(x1)22化简的结果是()ABCD3观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个A6055B6056C6057D605
2、84下列运算正确的是 ( )A2+a=3B =CD=5的值是A3B3C9D816如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PMCD,PNBC,则线段MN的长度的最小值为( )ABCD17下列计算结果为a6的是()Aa2a3 Ba12a2 C(a2)3 D(a2)38若正比例函数ymx(m是常数,m0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A2B2C4D49如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14
3、D2110某市2010年元旦这天的最高气温是8,最低气温是2,则这天的最高气温比最低气温高()A10B10C6D6二、填空题(共7小题,每小题3分,满分21分)11如图,AE是正八边形ABCDEFGH的一条对角线,则BAE= 12(题文)如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_13如图,M的半径为2,圆心M(3,4),点P是M上的任意一点,PAPB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_14如图,四边形ABCD中,D=B=90,A
4、B=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则CQR 的周长的最小值为_ 15长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_16如图,将直线yx向下平移b个单位长度后得到直线l,l与反比例函数y(x0)的图象相交于点A,与x轴相交于点B,则OA2OB2的值为_17如图,点E在正方形ABCD的外部,DCE=DEC,连接AE交CD于点F,CDE的平分线交EF于点G,AE=2DG若BC=8,则AF=_三、解答题(共7小题,满分69分)18(10分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们
5、每次投中的个数绘制成如图所示的折线统计图(1)根据图中所给信息填写下表: 投中个数统计 平均数 中位数 众数 A 8 B7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明19(5分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多
6、?最多是多少元?20(8分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图 态度非常喜欢喜欢一般不知道频数90b3010频率a0.350.20 请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了 名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数21(10分)解不等式组: ,并写出它的所有整数解22(10分)车辆经过润扬大桥收费站时,4个收费通道 AB、C、D中,可
7、随机选择其中的一个通过一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率23(12分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定24(14分)“分组合作学习”已成为推动课堂教学改革
8、,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】先提取公因式ax,再根据完全平方公式把x22x+1继续分解即可.【详解】原式=ax(x22x+1)=ax(x1)2,故选D【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;
9、公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.2、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.3、D【解析】设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出a =1+3n(n为正整数),再代入a=2019即可得出结论【详解】设第n个图形有an个(n为正整数),观察图形,可知:a11+31,a21+32,a31+33,a41+34,an1+3n(n为正整数),a20191+320191故选
10、:D【点睛】此题考查规律型:图形的变化,解题关键在于找到规律4、D【解析】根据整式的混合运算计算得到结果,即可作出判断【详解】A、2与a 不是同类项,不能合并,不符合题意;B、 =,不符合题意;C、原式=,不符合题意;D、=,符合题意,故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键5、C【解析】试题解析: 的值是3 故选C.6、B【解析】分析:由于点P在运动中保持APD=90,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可详解: 由于点P在运动中保持APD=90, 点P的路径是一段以
11、AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在RtQDC中,QC=, CP=QCQP=,故选B点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型解决这个问题的关键是根据圆的知识得出点P的运动轨迹7、C【解析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得【详解】A、a2a3=a5,此选项不符合题意;B、a12a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(-a2)3=-a6,此选项不符合题意;故选C【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则8、B【解析】
12、利用待定系数法求出m,再结合函数的性质即可解决问题【详解】解:ymx(m是常数,m0)的图象经过点A(m,4),m24,m2,y的值随x值的增大而减小,m0,m2,故选:B【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型9、A【解析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选:A【点睛】此题主要考查了解直角三角形的知识
13、,作出ADBC,进而得出相关线段的长度是解决问题的关键10、A【解析】用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【详解】8-(-2)=8+2=10即这天的最高气温比最低气温高10故选A二、填空题(共7小题,每小题3分,满分21分)11、67.1【解析】试题分析:图中是正八边形,各内角度数和=(82)180=1080,HAB=10808=131,BAE=1312=67.1故答案为67.1考点:多边形的内角12、12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC
14、时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.13、6【解析】点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当O与M外切时,AB最小,根据条件求出AO即可求解;【详解】解:点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当O与M外切时,AB最小,M的半径为2,圆心M(3,4),PM5,OA3,AB6,故答案为6;【点睛】本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键14、【解析】作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长CQQRCRGQQRRFGF根据圆周角定理可得
15、CDBCAB45,CBDCAD30,由于GF2BD,在三角形CBD中,作CHBD于H,可求BD的长,从而求出CQR的周长的最小值【详解】解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长CQQRCRGQQRRFGF, 在RtADC中,sinDAC,DAC30,BABC,ABC90,BACBCA45,ADCABC90,A,B,C,D四点共圆,CDBCAB45,CBDCAD30在三角形CBD中,作CHBD于H,BDDHBH4cos45cos30,CDDF,CBBG,GF2BD,CQR的周长的最小值为【点睛】本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答15、1
16、【解析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】长、宽分别为a、b的矩形,它的周长为14,面积为10,a+b=7,ab=10,a2b+ab2=ab(a+b)=107=1,故答案为:1【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键16、1【解析】解:平移后解析式是y=xb,代入y=得:xb=,即x2bx=5,y=xb与x轴交点B的坐标是(b,0),设A的坐标是(x,y),OA2OB2=x2+y2b2=x2+(xb)2b2=2x22xb=2(x2xb)=25=1,故答案为1点睛:本题是反比例函数综
17、合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.17、【解析】如图作DHAE于H,连接CG设DG=x,DCE=DEC,DC=DE,四边形ABCD是正方形,AD=DC,ADF=90,DA=DE,DHAE,AH=HE=DG,在GDC与GDE中,GDCGDE(SAS),GC=GE,DEG=DCG=DAF,AFD=CFG,ADF=CGF=90,2GDE+2DEG=90,GDE+DEG=45,DGH=45,在RtADH中,AD=8,AH=x,DH=x,82=x2+(x)2,解得:x=,ADHA
18、FD,,AF=4故答案为4三、解答题(共7小题,满分69分)18、(1)7,9,7;(2)应该选派B;【解析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案【详解】(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;B成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)= (79)2+(710)2+(74)2+(73)2+(79)2+(77)2=7;= (77)2+(77)2+(78)2+(77)2+(76)2+(77)2= ;从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B【点睛】此题主要考查了中位
19、数、众数、方差的定义,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好19、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大
20、值试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x(30-x),解得x10,设全部收购该基地生姜的年总收入为y元,则y=82000x+72500(30-x)=-1500x+525000,y随x的增大而减小,当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用关键是根据
21、总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式20、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.【详解】解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);(2)“非常喜欢”频数90,a= ;(3).故答案为(1)200,;(2)a=0.45,b=70;(3)900名.【点睛】此题重点考察学生对频数和频率的应用,掌握频率的
22、计算公式是解题的关键.21、2,1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可【详解】解:解不等式(1),得解不等式(2),得x2 所以不等式组的解集:3x2 它的整数解为:2,1,0,1,222、(1);(2)【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论试题解析:(1)选择 A通道通过的概率=,故答案为;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,选择不同通道通过的概率=23、(1)85,85,80; (2)初中部决赛成绩较
23、好;(3)初中代表队选手成绩比较稳定【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)=70,初中代表队选手成绩比较稳定【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.24、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108.【解析】试题分析:(1)用“极高”的人数所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数调查的学生人数,即可得到所占的百分比,所占的百分比即可求出对应的扇形圆心角的度数.试题解析:(人).学生学习兴趣为“高”的人数为:(人).补全统计图如下:分组后学生学习兴趣为“中”的所占的百分比为:学生学习兴趣为“中”对应扇形的圆心角为:
限制150内