《河北省石家庄市裕华区第四十中学2023届中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省石家庄市裕华区第四十中学2023届中考数学考试模拟冲刺卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下面说法正确的个数有()如果三角形三个内角的比是123,那么这个三角形是直角三角形;如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;如果一个三角形的三条高的
2、交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;如果A=B=C,那么ABC是直角三角形;若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;在ABC中,若AB=C,则此三角形是直角三角形.A3个 B4个 C5个 D6个2如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A8073B8072C8071D80703某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花如果有ABEFDC,BCGHAD,那么下列说法错误的是()A红花、绿花种植面积一定相等B
3、紫花、橙花种植面积一定相等C红花、蓝花种植面积一定相等D蓝花、黄花种植面积一定相等4若=1,则符合条件的m有()A1个B2个C3个D4个5下列计算正确的是()A2x2y32x3y4x6y3B(2a2)36a6C(2a+1)(2a1)2a21D35x3y25x2y7xy6已知抛物线yax2+bx+c(a0)与x轴交于点A(1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:4a+2b0; 1a; 对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+cn1有两个不相等的实数根其中结论正确的个数为()A1个B2个C3个D4个7下列方程中是
4、一元二次方程的是()ABCD8若分式有意义,则a的取值范围为( )Aa4Ba4Ca4Da49下列运算错误的是()A(m2)3=m6 Ba10a9=a Cx3x5=x8 Da4+a3=a710某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同设每个笔记本的价格为x元,则下列所列方程正确的是()ABCD11互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A120元B100元C80元D60元12下列图案中,既是
5、中心对称图形,又是轴对称图形的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知一个正数的平方根是3x2和5x6,则这个数是_14已知n1,M,N,P,则M、N、P的大小关系为 15已知图中的两个三角形全等,则1等于_16如图,在中,于点,于点,为边的中点,连接,则下列结论:,为等边三角形,当时,.请将正确结论的序号填在横线上_. 17数据2,0,1,2,5的平均数是_,中位数是_18如图,在边长为1的正方形格点图中,B、D、E为格点,则BAC的正切值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)-()-1+3tan6
6、020(6分)如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.(1)求抛物线的表达式;(2)如图,当CP/AO时,求PAC的正切值;(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.21(6分)如图,是菱形的对角线,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数22(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行
7、,在A处测得灯塔P在北偏东60方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30方向上求APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23(8分)先化简,再求值:,其中x=124(10分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AEED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE求证:ABEDEF若正方形的边长为4,求BG的长25(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速
8、度向D运动(不与D重合)设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形26(12分)已知,抛物线y=x2+bx+c经过点A(1,0)和C(0,3)(1)求抛物线的解析式;(2)设点M在抛物线的对称轴上,当MAC是以AC为直角边的直角三角形时,求点M的坐标27(12分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜如果指针落在分割线上,则需要重新转动转盘请
9、问这个游戏对甲、乙双方公平吗?说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:三角形三个内角的比是1:2:3,设三角形的三个内角分别为x,2x,3x,x+2x+3x=180,解得x=30,3x=330=90,此三角形是直角三角形,故本小题正确;三角形的一个外角与它相邻的一个内角的和是180,若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;直角三角形的三条高的交点恰好是三角形的一个顶点,若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正
10、确;A=B=C,设A=B=x,则C=2x,x+x+2x=180,解得x=45,2x=245=90,此三角形是直角三角形,故本小题正确;三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,三角形一个内角也等于另外两个内角的和,这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,有一个内角一定是90,故这个三角形是直角三角形,故本小题正确;三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,有一个内角一定是90,故这个三角形是直角三角形,故本小题
11、正确故选D考点:1.三角形内角和定理;2.三角形的外角性质2、A【解析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=41+1;第2个图案中涂有阴影的小正方形个数为:9=42+1;第3个图案中涂有阴影的小正方形个数为:13=43+1;发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;第2018个图案中涂有阴影的小正方形个数为:4n+1=42018+1=1故选:A【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解
12、题的关键.3、C【解析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.4、C【解析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】=1 m2-9=0或m-2= 1 即m= 3或m=3,m
13、=1 m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.5、D【解析】A根据同底数幂乘法法则判断;B根据积的乘方法则判断即可;C根据平方差公式计算并判断;D根据同底数幂除法法则判断【详解】A.-2x-2y32x3y=-4xy4,故本选项错误;B.(2a2)3=8a6,故本项错误;C.(2a+1)(2a1)=4a21,故本项错误;D.35x3y25x2y=7xy,故本选项正确.故答案选D.【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除
14、法法则、积的乘方法则与平方差公式.6、C【解析】由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论错误;利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1a-,结论正确;由抛物线的顶点坐标及a0,可得出n=a+b+c,且nax2+bx+c,进而可得出对于任意实数m,a+bam2+bm总成立,结论正确;由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合正确【详解】:
15、抛物线y=ax2+bx+c的顶点坐标为(1,n),-=1,b=-2a,4a+2b=0,结论错误;抛物线y=ax2+bx+c与x轴交于点A(-1,0),a-b+c=3a+c=0,a=-又抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),2c3,-1a-,结论正确;a0,顶点坐标为(1,n),n=a+b+c,且nax2+bx+c,对于任意实数m,a+bam2+bm总成立,结论正确;抛物线y=ax2+bx+c的顶点坐标为(1,n),抛物线y=ax2+bx+c与直线y=n只有一个交点,又a0,抛物线开口向下,抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方
16、程ax2+bx+c=n-1有两个不相等的实数根,结合正确故选C【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键7、C【解析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可【详解】解:A、当a=0时,不是一元二次方程,故本选项错误;B、是分式方程,故本选项错误;C、化简得:是一元二次方程,故本选项正确;D、是二元二次方程,故本选项错误;故选:C【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键8、A【解析】分式有意义时,分母a-40【详解】依题意得:a40,解
17、得a4.故选:A【点睛】此题考查分式有意义的条件,难度不大9、D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10a9=a,正确;C、x3x5=x8,正确;D、a4+a3=a4+a3,错误,故选D【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.10、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可考点:由实际问题抽象出分式方程11、C【解析】解:设该商
18、品的进价为x元/件,依题意得:(x+20)=200,解得:x=1该商品的进价为1元/件故选C12、B【解析】根据轴对称图形与中心对称图形的概念解答【详解】A不是轴对称图形,是中心对称图形;B是轴对称图形,是中心对称图形;C不是轴对称图形,也不是中心对称图形;D是轴对称图形,不是中心对称图形故选B【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题解析:根据题意,得:解得:故答案为【点睛】:一个正数有2个平方根,它们互为相
19、反数.14、MPN【解析】n1,n-10,nn-1,M1,0N1,0PPN.点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b0,那么ab; 如果a-b=0,那么a=b; 如果a-b0,那么ab,bc,那么abc.15、58【解析】如图,2=1805072=58,两个三角形全等,1=2=58.故答案为58.16、【解析】根据直角三角形斜边上的中线等于斜边的一半可判断;先证明ABMACN,再根据相似三角形的对应边成比例可判断;先根据直角三角形两锐角互余的性质求出ABM=ACN=30,再根据三角形的内角和定理求出BCN+CBM=60,然后根据三角形的一
20、个外角等于与它不相邻的两个内角的和求出BPN+CPM=120,从而得到MPN=60,又由得PM=PN,根据有一个角是60的等腰三角形是等边三角形可判断;当ABC=45时,BCN=45,进而判断【详解】BMAC于点M,CNAB于点N,P为BC边的中点,PM=BC,PN=BC,PM=PN,正确;在ABM与ACN中,A=A,AMB=ANC=90,ABMACN,错误;A=60,BMAC于点M,CNAB于点N,ABM=ACN=30,在ABC中,BCN+CBM=180-60-302=60,点P是BC的中点,BMAC,CNAB,PM=PN=PB=PC,BPN=2BCN,CPM=2CBM,BPN+CPM=2(
21、BCN+CBM)=260=120,MPN=60,PMN是等边三角形,正确;当ABC=45时,CNAB于点N,BNC=90,BCN=45,P为BC中点,可得BC=PB=PC,故正确所以正确的选项有:故答案为【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键17、0.8 0 【解析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两
22、个数据的平均数就是这组数据的中位数【详解】平均数=(2+01+2+5)5=0.8;把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.18、 【解析】根据圆周角定理可得BAC=BDC,然后求出tanBDC的值即可【详解】由图可得,BAC=BDC,O在边长为1的网格格点上,BE=3,DB=4,则tanBDC=tanBAC=故答案为【点睛】本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.三、解答题:(本大
23、题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、0【解析】根据二次根式的乘法、绝对值、负整数指数幂和特殊角的三角函数值计算,然后进行加减运算【详解】原式=-2+2-2+3=0.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式也考查了零指数幂、负整数指数幂和特殊角的三角函数值20、(1)抛物线的表达式为;(2);(3)P点的坐标是.【解析】分析:(1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;(2)如下图,作PHAC于H,连
24、接OP,由已知条件先求得PC=2,AC=,结合SAPC,可求得PH=,再由OA=OC得到CAO=15,结合CPOA可得PCA=15,即可得到CH=PH=,由此可得AH=,这样在RtAPH中由tanPAC=即可求得所求答案了;(3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.详解:(1)直线y=x+1经过点A、C,点A在x轴上,点C在y轴上A点坐标是(1,0),点C坐标是(0,1),又抛物线过A,C两点,解得,抛物线的表达式为;(2)作PHAC于H,点C、P在抛
25、物线上,CP/AO, C(0,1),A(-1,0)P(-2,1),AC=,PC=2,PH=,A(1,0),C(0,1),CAO=15.CP/AO,ACP=CAO=15,PHAC,CH=PH=,.;(3),抛物线的对称轴为直线,以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,PQAO,且PQ=AO=1 P,Q都在抛物线上,P,Q关于直线对称, P点的横坐标是3, 当x=3时,P点的坐标是.点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出RtAPH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQAO,PQ=AO及P
26、、Q关于抛物线的对称轴对称得到点P的横坐标.【详解】请在此输入详解!21、(1)答案见解析;(2)45【解析】(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;(2)根据DBFABDABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)四边形ABCD是菱形,ABDDBCABC75,DCAB,AC,ABC150,ABC+C180,CA30EF垂直平分线段AB,AFFB,AFBA30,DBFABDFBE45【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题22、(1)30;(2)海监船继续向正东方向航行是安全的【解析】(
27、1)根据直角的性质和三角形的内角和求解;(2)过点P作PHAB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在APB中,PAB=30,ABP=120APB=180-30-120=30(2)过点P作PHAB于点H 在RtAPH中,PAH=30,AH=PH在RtBPH中,PBH=30,BH=PHAB=AH-BH=PH=50解得PH=2525,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形23、 【解析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值【详解】解:原式=,当x=1时,原式=【点睛】本题考查了分式的化简求值,解
28、题的关键是熟练的掌握分式的运算法则.24、(1)见解析;(2)BG=BC+CG=1【解析】(1)利用正方形的性质,可得A=D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得ABEDEF;(2)根据相似三角形的预备定理得到EDFGCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:ABCD为正方形,AD=AB=DC=BC,A=D=90 .AE=ED,AE:AB=1:2.DF=DC,DF:DE=1:2,AE:AB=DF:DE,ABEDEF;(2)解:ABCD为正方形,EDBG,EDFGCF,ED:CG=DF:CF.又DF=DC,
29、正方形的边长为4,ED=2,CG=6,BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.25、(1)证明见解析(2) 【解析】试题分析:(1)先根据四边形ABCD是矩形,得出ADBC,PDO=QBO,再根据O为BD的中点得出PODQOB,即可证得OP=OQ;(2)根据已知条件得出A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形试题解析:(1)证明:因为四边形ABCD是矩形,所以ADBC,所以PDO=QBO,又因为O为BD
30、的中点,所以OB=OD,在POD与QOB中,PDO=QBO,OB=OD,POD=QOB,所以PODQOB,所以OP=OQ(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以A=90,在RtABP中,由勾股定理得:,即,解得:t=,即运动时间为秒时,四边形PBQD是菱形考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理26、(1)y=x2+2x+1;(2)当MAC是直角三角形时,点M的坐标为(1,)或(1,)【解析】(1)由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;(2)设点M的坐标为(1,m),则CM=,AC=,AM=,
31、分ACM=90和CAM=90两种情况,利用勾股定理可得出关于m的方程,解之可得出m的值,进而即可得出点M的坐标【详解】(1)将A(1,0)、C(0,1)代入y=x2+bx+c中,得:,解得:,抛物线的解析式为y=x2+2x+1(2)y=x2+2x+1=(x1)2+4,设点M的坐标为(1,m),则CM=,AC=,AM=分两种情况考虑:当ACM=90时,有AM2=AC2+CM2,即4+m2=10+1+(m1)2,解得:m=,点M的坐标为(1,);当CAM=90时,有CM2=AM2+AC2,即1+(m1)2=4+m2+10,解得:m=,点M的坐标为(1,)综上所述:当MAC是直角三角形时,点M的坐标为(1,)或(1,)【点睛】本题考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数解析式、二次函数图象的点的坐标特征以及勾股定理等知识点27、见解析【解析】解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为、乙获胜的概率为,这个游戏对甲、乙双方不公平【点睛】考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比
限制150内