江西省南昌二中、九江一中、新余一中、临川一中八所重点中学2022-2023学年高三下学期联考数学试题含解析.doc
《江西省南昌二中、九江一中、新余一中、临川一中八所重点中学2022-2023学年高三下学期联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江西省南昌二中、九江一中、新余一中、临川一中八所重点中学2022-2023学年高三下学期联考数学试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设是虚数单位,则( )ABCD2已知,若则实数的取值范围是( )ABCD3已知角的终边经过点,则的值是A1或B或C1或D或4在中,点D是线段BC上任意一点,则( )AB-2CD25如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图
2、,则该几何体的各个面中最大面的面积为( )ABCD6已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )ABCD7是恒成立的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8已知函数,若对,且,使得,则实数的取值范围是( )ABCD9在边长为1的等边三角形中,点E是中点,点F是中点,则( )ABCD10设双曲线(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )ABCD11双曲线的离心率为,则其渐近线方程为ABCD12如图,点E是
3、正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则( )A在点F的运动过程中,存在EF/BC1B在点M的运动过程中,不存在B1MAEC四面体EMAC的体积为定值D四面体FA1C1B的体积不为定值二、填空题:本题共4小题,每小题5分,共20分。13设满足约束条件,则的取值范围是_.14已知的三个内角为,且,成等差数列, 则的最小值为_,最大值为_.15函数的定义域为_.16设、满足约束条件,若的最小值是,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图, 在四棱锥中, 底面是矩形, 四条侧棱长均相等
4、.(1)求证:平面;(2)求证:平面平面.18(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值19(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.20(12分)已知函数.(1)解不等式;(2)记函数的最
5、大值为,若,证明:.21(12分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,求的面积最小值.22(10分)的内角,的对边分别为,其面积记为,满足.(1)求;(2)若,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.2、C【解析】根据,得到
6、有解,则,得,得到,再根据,有,即,可化为,根据,则的解集包含求解,【详解】因为,所以有解,即有解,所以,得,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C【点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,3、B【解析】根据三角函数的定义求得后可得结论【详解】由题意得点与原点间的距离当时,当时,综上可得的值是或故选B【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可4、A【解析】设,用表示出,求出的值即可
7、得出答案.【详解】设由,.故选:A【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.5、B【解析】根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题6、A【解析】构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意
8、可知,所以在上递增.由于是奇函数,所以当时,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.7、A【解析】设 成立;反之,满足 ,但,故选A.8、D【解析】先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,故在区间上单调递减;当时,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省 南昌 九江 一中 新余 重点中学 2022 2023 学年 下学 联考 数学试题 解析
链接地址:https://www.taowenge.com/p-88305952.html
限制150内