《江西省婺源县2023年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省婺源县2023年中考数学押题卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A3cm,4cm,8cm B8cm,7cm,15cmC13cm,12cm,20cm D5cm,5cm,11cm2甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191
2、乙55135151110某同学分析上表后得出如下结论:甲、乙两班学生的平均成绩相同;乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀);甲班成绩的波动比乙班大上述结论中,正确的是()ABCD3下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A2B1C0D14在平面直角坐标系中,二次函数y=a(xh)2+k(a0)的图象可能是ABCD5如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则ABC的正切值是( )AB2CD6若一次函数的图像过第一、三、四象限,则函数( )A有最大值B有最大值C有最小值D有最小值7如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体
3、中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A正方体B球C圆锥D圆柱体8如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:ac1;a+b=1;4acb2=4a;a+b+c1其中正确结论的个数是()A1 B2 C3 D495的倒数是AB5CD510如图,平面直角坐标系中,矩形ABCD的边AB:BC3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y的图象经过点D,则k值为()A14B14C7D7二、填空题(本大题共6个小题,每小题3分,共18分)11若两个相似三角形的面积比为14,则这两个相似三角形的周长比是_12如图,已知在
4、平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_13如图,RtABC中,BAC=90,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_14已知二次函数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_(只需写出一个)15为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1这组数据的中位数和众数分别是_16某招聘考试分笔试和面试两种,其中笔试按60%、面试按40
5、%计算加权平均数,作为总成绩孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,一次函数yx+3的图象与反比例函数y(x0,k是常数)的图象交于A(a,2),B(4,b)两点求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使ACx轴,BCy轴,连接OA,OB若点P在y轴上,且OPA的面积与四边形OACB的面积相等,求点P的坐标18(8分)近日,深圳市人民政府发布了深圳市可持续发展规划,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩
6、,分为5组:A组5060;B组6070;C组7080;D组8090;E组90100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图抽取学生的总人数是 人,扇形C的圆心角是 ;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?19(8分)(1)计算:2sin45+(2)0()1;(2)先化简,再求值(a2b2),其中a,b220(8分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和1;乙袋中有三个完全相同的小球,分别标有数字1、0和1小丽先从甲袋中随机取
7、出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y)(1)请用表格或树状图列出点P所有可能的坐标;(1)求点P在一次函数yx1图象上的概率21(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率50.26180.36714880.16合计1 (1)统计表中的_,_,_;请将频数分布表直方图补充完整;求所有被调查学生课外
8、阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.22(10分)如图,MON的边OM上有两点A、B在MON的内部求作一点P,使得点P到MON的两边的距离相等,且PAB的周长最小(保留作图痕迹,不写作法)23(12分)如图,AB是O的直径,BAC=90,四边形EBOC是平行四边形,EB交O于点D,连接CD并延长交AB的延长线于点F(1)求证:CF是O的切线;(2)若F=30,EB=6,求图中阴影部分的面积(结果保留根号和)24为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60的方向上;从A处向正东方向
9、行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45的方向上,如图所示求凉亭P到公路l的距离(结果保留整数,参考数据:1.414,1.732)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】A、3+48,不能组成三角形;B、8+715,不能组成三角形;C、13+1220,能够组成三角形;D、5+511,不能组成三角形故选:C【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.2、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学
10、生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大故正确,故选D点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3、A【解析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解【详解】|-1|=1,|-1|=1,|-1|-1|=10,四个数表示在数轴上,它们对应的点中,离原点最远的是-1故选A【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想4、B【解析】根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【详解
11、】二次函数y=a(xh)2+k(a0)二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.5、A【解析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到ABC是直角三角形,根据正切的定义计算即可详解:连接AC,由网格特点和勾股定理可知,AC=,AC2+AB2=10,BC2=10,AC2+AB2=BC2,ABC是直角三角形,tanABC=.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角
12、形是解题的关键6、B【解析】解:一次函数y=(m+1)x+m的图象过第一、三、四象限,m+10,m0,即-1m0,函数有最大值,最大值为,故选B7、D【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞【详解】根据三视图的知识来解答圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项故选D【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难8、C【解析】根据图象知道:a1,c1,ac1,故正确;顶点坐标为(1/2 ,1),x=
13、-b/2a =1/2 ,a+b=1,故正确;根据图象知道:x=1时,y=a+b+c1,故错误;顶点坐标为(1/2 ,1),=1,4ac-b2=4a,故正确其中正确的是故选C9、C【解析】若两个数的乘积是1,我们就称这两个数互为倒数【详解】解:5的倒数是故选C10、B【解析】过点D作DFx轴于点F,则AOB=DFA=90,OAB+ABO=90,四边形ABCD是矩形,BAD=90,AD=BC,OAB+DAF=90,ABO=DAF,AOBDFA,OA:DF=OB:AF=AB:AD,AB:BC=3:2,点A(3,0),B(0,6),AB:AD=3:2,OA=3,OB=6,DF=2,AF=4,OF=OA
14、+AF=7,点D的坐标为:(7,2),k,故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题分析:两个相似三角形的面积比为1:4,这两个相似三角形的相似比为1:1,这两个相似三角形的周长比是1:1,故答案为1:1考点:相似三角形的性质12、【解析】根据,只要求出、即可解决问题;【详解】四边形是平行四边形,.故答案为.【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.13、【解析】【分析】如图,作A关于BC的对称点A,连接AA,交BC于F,过A作AEAC于E,交BC于D,则AD=AD,此时AD+DE的值最小,就是AE的长,根据相似三角形对应边的
15、比可得结论【详解】如图,作A关于BC的对称点A,连接AA,交BC于F,过A作AEAC于E,交BC于D,则AD=AD,此时AD+DE的值最小,就是AE的长;RtABC中,BAC=90,AB=3,AC=6,BC=9,SABC=ABAC=BCAF,36=9AF,AF=2,AA=2AF=4,AFD=DEC=90,ADF=CDE,A=C,AEA=BAC=90,AEABAC,AE=,即AD+DE的最小值是,故答案为【点睛】本题考查轴对称最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.14、y=x2等【解析】分析:根据二次函数的图象
16、开口向上知道a1,又二次函数的图象过原点,可以得到c=1,所以解析式满足a1,c=1即可详解:二次函数的图象开口向上,a1二次函数的图象过原点,c=1 故解析式满足a1,c=1即可,如y=x2 故答案为y=x2(答案不唯一)点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想15、2.40,2.1【解析】把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1它们
17、的中位数为2.40,众数为2.1故答案为2.40,2.1点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.16、88【解析】试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可:笔试按60%、面试按40%计算,总成绩是:9060%+8540%=88(分)三、解答题(共8题,共72分)17、 (1) 反比例函数的表达式为y(x0);(2) 点P的坐标为
18、(0,4)或(0,4)【解析】(1)根据点A(a,2),B(4,b)在一次函数yx+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACBS矩形OECFSOAESOBF,设点P(0,m),根据反比例函数的几何意义解答即可【详解】(1)点A(a,2),B(4,b)在一次函数yx+3的图象上,a+32,b4+3,a2,b1,点A的坐标为(2,2),点B的坐标为(4,1),又点A(2,2)在反比例函数y的图象上,k224,反比例函数的表达式为y(x0);(2)延长CA交y轴于点E,延长CB交x
19、轴于点F,ACx轴,BCy轴,则有CEy轴,CFx轴,点C的坐标为(4,2)四边形OECF为矩形,且CE4,CF2,S四边形OACBS矩形OECFSOAESOBF2422414,设点P的坐标为(0,m),则SOAP2|m|4,m4,点P的坐标为(0,4)或(0,4)【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键18、(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人【解析】(1)由D组频数及其所占比例可得总人数,用360乘以C组人数所占比例可
20、得;(2)用总人数分别乘以A、B组的百分比求得其人数,再用总人数减去A、B、C、D的人数求得E组的人数可得;(3)用总人数乘以样本中A、B组的百分比之和可得【详解】解:(1)抽取学生的总人数为7826%=300人,扇形C的圆心角是360=144,故答案为300、144;(2)A组人数为3007%=21人,B组人数为30017%=51人,则E组人数为300(21+51+120+78)=30人,补全频数分布直方图如下:(3)该校创新意识不强的学生约有2200(7%+17%)=528人【点睛】考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认
21、真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了用样本估计总体19、 (1)-2 (2)-【解析】试题分析:(1)将原式第一项被开方数8变为42,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果; (2)先把和a2b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值解:(1)2sin45+(2)0()1=22+13=2+13=2;(2)(a2b2)=(a+b)(ab)=a+b,当a=,b=2时,原式=+(2)=20、(1)见解析;(1).【解析】试题分析:(1)
22、画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率.试题解析:(1)画树状图:或列表如下:点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).只有(1,1)与(-1,-1)这两个点在一次函数图像上,P(点P在一次函数图像上)=.考点:用(树状图或列表法)求概率.21、(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画
23、出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=50,a=500.2=10,b=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(510+618+714+88)50=32050=6.4(本)(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)1200=528(人)点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型22、详见解析【解析】作MON的角平
24、分线OT,在ON上截取OA,使得OAOA,连接BA交OT于点P,点P即为所求【详解】解:如图,点P即为所求【点睛】本题主要考查作图-复杂作图,利用了角平分线的性质,难点在于利用轴对称求最短路线的问题23、(1)证明见解析;(2)93【解析】试题分析:(1)、连接OD,根据平行四边形的性质得出AOC=OBE,COD=ODB,结合OB=OD得出DOC=AOC,从而证明出COD和COA全等,从而的得出答案;(2)、首先根据题意得出OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据RtAOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个AOC的面积减去扇形OAD的面积得
25、出答案.试题解析:(1)如图连接OD四边形OBEC是平行四边形,OCBE,AOC=OBE,COD=ODB,OB=OD,OBD=ODB,DOC=AOC,在COD和COA中,CODCOA,CDO=CAO=90,CFOD, CF是O的切线(2)F=30,ODF=90,DOF=AOC=COD=60,OD=OB,OBD是等边三角形,4=60,4=F+1,1=2=30,ECOB,E=1804=120,3=180E2=30,EC=ED=BO=DB,EB=6,OB=ODOA=3, 在RtAOC中,OAC=90,OA=3,AOC=60,AC=OAtan60=3, S阴=2SAOCS扇形OAD=233=9324、凉亭P到公路l的距离为273.2m【解析】分析:作PDAB于D,构造出RtAPD与RtBPD,根据AB的长度利用特殊角的三角函数值求解【详解】详解:作PDAB于D设BD=x,则AD=x+1EAP=60,PAB=9060=30在RtBPD中,FBP=45,PBD=BPD=45,PD=DB=x在RtAPD中,PAB=30,PD=tan30AD,即DB=PD=tan30AD=x=(1+x),解得:x273.2,PD=273.2答:凉亭P到公路l的距离为273.2m【点睛】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答
限制150内