《河南卢氏县重点名校2022-2023学年中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《河南卢氏县重点名校2022-2023学年中考数学考试模拟冲刺卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图所示,结论:;,其中正确的是有( )A1个B2个C3个D4个2关于反比例函数,下列说法正确的是( )A函数图像经过点(2,2);B函数图像位于第一、三象限;C当时,函数值随着的增大而增大;D当时,3估算的运算结果应在( )A2到3之间B3到4之间C4到5之间D5到6之间4如图,以AOB的顶点O为
2、圆心,适当长为半径画弧,交OA于点C,交OB于点D再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在AOB内部交于点E,过点E作射线OE,连接CD则下列说法错误的是A射线OE是AOB的平分线BCOD是等腰三角形CC、D两点关于OE所在直线对称DO、E两点关于CD所在直线对称5已知常数k0,b0,则函数y=kx+b,的图象大致是下图中的()ABCD6如图,ABCD,那么()ABAD与B互补B1=2CBAD与D互补DBCD与D互补7如图,在ABC中,C=90,B=30,AD是ABC的角平分线,DEAB,垂足为点E,DE=1,则BC= ()AB2C3D+28下列“数字图形”中,既是轴对称图形,又
3、是中心对称图形的有()A1个 B2个 C3个 D4个9如图图形中,是中心对称图形的是( )ABCD10下列各数中是无理数的是( )Acos60BC半径为1cm的圆周长D二、填空题(本大题共6个小题,每小题3分,共18分)11从一副54张的扑克牌中随机抽取一张,它是K的概率为_12在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_个13如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AEEF,CFEF,则正方形A
4、BCD的边长为_14圆锥的底面半径为6,母线长为10,则圆锥的侧面积为_cm215一组数据1,4,4,3,4,3,4的众数是_16一艘轮船在小岛A的北偏东60方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45的C处,则该船行驶的速度为_海里/时三、解答题(共8题,共72分)17(8分)解不等式组:并写出它的所有整数解18(8分)计算:|-2|+21cos61(1)119(8分)如图,二次函数y+mx+4m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C抛物线的对称轴是直线x2,D是抛物线的顶点(1)求二次函数的表达式;(2)当x1时,请求出y的取值范围;(3)连接
5、AD,线段OC上有一点E,点E关于直线x2的对称点E恰好在线段AD上,求点E的坐标20(8分)已知:a+b4(1)求代数式(a+1)(b+1)ab值;(2)若代数式a22ab+b2+2a+2b的值等于17,求ab的值21(8分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:A二维码过闸 B现金购票 C市名卡过闸 D银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).
6、22(10分)ABC中,AB=AC,D为BC的中点,以D为顶点作MDN=B如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与ADE相似的三角形如图(2),将MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论在图(2)中,若AB=AC=10,BC=12,当DEF的面积等于ABC的面积的时,求线段EF的长23(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批
7、发价元千克2040零售价元千克2650他购进的猕猴桃和芒果各多少千克?如果猕猴桃和芒果全部卖完,他能赚多少钱?24x取哪些整数值时,不等式5x23(x1)与x2x都成立?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据已知的条件,可由AAS判定AEBAFC,进而可根据全等三角形得出的结论来判断各选项是否正确【详解】解:如图:在AEB和AFC中,有,AEBAFC;(AAS)FAM=EAN,EAN-MAN=FAM-MAN,即EAM=FAN;(故正确)又E=F=90,AE=AF,EAMFAN;(ASA)EM=FN;(故正确)由AEBAFC知:B=C,AC=AB;又CAB=BA
8、C,ACNABM;(故正确)由于条件不足,无法证得CD=DN;故正确的结论有:;故选C【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难2、C【解析】直接利用反比例函数的性质分别分析得出答案【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x1时,y-4,故此选项错误;故选C【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键3、D【解析】解
9、:= ,23,在5到6之间故选D【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键4、D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE在EOC与EOD中,OC=OD,CE=DE,OE=OE,EOCEOD(SSS)AOE=BOE,即射线OE是AOB的平分线,正确,不符合题意B、根据作图得到OC=OD,COD是等腰三角形,正确,不符合题意C、根据作图得到OC=OD,又射线OE平分AOB,OE是CD的垂直平分线C、D两点关于OE所在直线对称,正确,不符合题意D、根据作图不能得出CD平分OE,CD不是OE的平分线,O、E两点关于CD所在直线不对称,错误,符合题意故
10、选D5、D【解析】当k0,b0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项【详解】 解:当k0,b0时,直线与y轴交于正半轴,且y随x的增大而减小,直线经过一、二、四象限,双曲线在二、四象限故选D【点睛】本题考查了一次函数、反比例函数的图象与性质关键是明确系数与图象的位置的联系6、C【解析】分清截线和被截线,根据平行线的性质进行解答即可【详解】解:ABCD,BAD与D互补,即C选项符合题意;当ADBC时,BAD与B互补,1=2,BCD与D互补,故选项A、B、D都不合题意,故选:C【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键7、C【解析】试题分析:根据角平
11、分线的性质可得CD=DE=1,根据RtADE可得AD=2DE=2,根据题意可得ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1考点:角平分线的性质和中垂线的性质8、C【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合9、D【解析】根据中心对称图形的概念和识别【详解】根据中心对称图形的概念和识别
12、,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形故选D【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形10、C【解析】分析:根据“无理数”的定义进行判断即可.详解:A选项中,因为,所以A选项中的数是有理数,不能选A;B选项中,因为是无限循环小数,属于有理数,所以不能选B;C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;D选项中,因为,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、
13、【解析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】一副扑克牌共有54张,其中只有4张K,从一副扑克牌中随机抽出一张牌,得到K的概率是=,故答案为:【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=12、1【解析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为200.3=6(个),则红球大约有20
14、-6=1个,故答案为:1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确13、 【解析】分析:连接AC,交EF于点M,可证明AEMCMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB详解:连接AC,交EF于点M,AE丄EF,EF丄FC,E=F=90,AME=CMF, AEMCFM,AE=1,EF=FC=3,EM=,FM=,在RtAEM中,AM2=AE2+EM2=1
15、+=,解得AM=,在RtFCM中,CM2=CF2+FM2=9+=,解得CM=,AC=AM+CM=5,在RtABC中,AB=BC,AB2+BC2=AC2=25,AB=,即正方形的边长为故答案为:点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用14、60【解析】圆锥的侧面积=底面半径母线长,把相应数值代入即可求解解:圆锥的侧面积=610=60cm115、1【解析】本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个【详解】在这一组数据中1是出现次数最多的,故众数是1故答案为1
16、【点睛】本题为统计题,考查了众数的定义,是基础题型16、【解析】设该船行驶的速度为x海里/时,由已知可得BC3x,AQBC,BAQ60,CAQ45,AB80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC40403x,解方程即可【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45的C处,由题意得:AB80海里,BC3x海里,在直角三角形ABQ中,BAQ60,B906030,AQAB40,BQAQ40,在直角三角形AQC中,CAQ45,CQAQ40,BC40403x,解得:x.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直
17、角三角形,熟练掌握方向角是解题的关键.三、解答题(共8题,共72分)17、原不等式组的解集为,它的所有整数解为0,1【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可【详解】解:,解不等式,得,解不等式,得x2,原不等式组的解集为,它的所有整数解为0,1【点睛】本题主要考查了一元一次不等式组解集的求法解一元一次不等式组的简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)18、1- 【解析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可【详解】解:原式【点睛】本题考查了零指
18、数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键19、(1)y=x11x+6;(1)y;(3)(0,4)【解析】(1)利用对称轴公式求出m的值,即可确定出解析式;(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可【详解】(1)抛物线对称轴为直线x=1,=1,即m=1,则二次函数解析式为y=x11x+6;(1)当x=时,y=;当x=1时,y=x1位于对称轴右侧,y随x的增大而减小,y;(3)当x=1时,y=8,顶点D的坐标是(1,8),令y=0,得到:x
19、11x+6=0,解得:x=6或x=1点A在点B的左侧,点A坐标为(6,0)设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11设E(0,n),则有E(4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4)【点睛】本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键20、(1)5;(2)1或1【解析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+24=17,据此进一步计算可得【详解】(1)原式=ab+a+b+1ab=a+b+1,当a+b=4时,原式=
20、4+1=5;(2)a22ab+b2+2a+2b=(ab)2+2(a+b),(ab)2+24=17,(ab)2=9,则ab=1或1【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用21、 (1)600人(2)【解析】(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率【详解】(1)(人),最喜欢方式A的有600人(2)列表法: ABCAA,AA,BA,CBB,AB,BB,CCC,
21、AC,BC,C树状法:(同一种购票方式)【点睛】本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小22、(1)ABD,ACD,DCE(2)BDFCEDDEF,证明见解析;(3)4.【解析】(1)根据等腰三角形的性质以及相似三角形的判定得出ADEABDACDDCE,同理可得:ADEACDADEDCE(2)利用已知首先求出BFD=CDE,即可得出BDFCED,再利用相似三角形的性质得出,从而得出BDFCEDDEF(3)利用DEF的面积等于ABC的面积的,求出DH的长,从而利用SDEF的值求出EF即可【
22、详解】解:(1)图(1)中与ADE相似的有ABD,ACD,DCE(2)BDFCEDDEF,证明如下:B+BDF+BFD=30,EDF+BDF+CDE=30,又EDF=B,BFD=CDEAB=AC,B=CBDFCEDBD=CD,即又C=EDF,CEDDEFBDFCEDDEF (3)连接AD,过D点作DGEF,DHBF,垂足分别为G,HAB=AC,D是BC的中点,ADBC,BD=BC=1在RtABD中,AD2=AB2BD2,即AD2=1023,AD=2SABC=BCAD=32=42,SDEF=SABC=42=3又ADBD=ABDH,BDFDEF,DFB=EFD DHBF,DGEF,DHF=DGF又
23、DF=DF,DHFDGF(AAS)DH=DG=SDEF=EFDG=EF=3,EF=4【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用23、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱【解析】设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;根据利润销售收入成本,即可求出结论【详解】设购进猕猴桃x千克,购进芒果y千克,根据题意得:,解得:答:购进猕猴桃20千克,购进芒果30千克元答:如果猕猴桃和芒果全部卖完,他能赚420元钱【点睛】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算24、2,1,0,1【解析】解不等式5x23(x1)得:得x2.5;解不等式x2x得x1.则这两个不等式解集的公共部分为 ,因为x取整数,则x取2,1,0,1.故答案为2,1,0,1【点睛】本题考查了求不等式组的整数解,先求出每个不等式的解集,再求出它们的公共部分,最后确定公共的整数解(包括正整数,0,负整数).
限制150内