《河南省南阳卧龙区五校联考2022-2023学年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河南省南阳卧龙区五校联考2022-2023学年中考二模数学试题含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1若代数式,则M与N的大小关系是( )ABCD2由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A三个视图的面积一样大B主视图的面积最小C左视图的面积最小D俯视图的面积最小3在3,0,2, 四个数中
2、,最小的数是( )A3B0C2D4若ABC与DEF相似,相似比为2:3,则这两个三角形的面积比为( )A2:3B3:2C4:9D9:45已知O的半径为13,弦ABCD,AB=24,CD=10,则四边形ACDB的面积是()A119B289C77或119D119或2896孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A五丈B四丈五尺C一丈D五尺
3、7若分式有意义,则a的取值范围为( )Aa4Ba4Ca4Da48A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )A2(x1)+3x=13B2(x+1)+3x=13C2x+3(x+1)=13D2x+3(x1)=139一次函数与反比例函数在同一个坐标系中的图象可能是()ABCD10如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D二、填空题(本大题共6个小题,每小题3分,共18分)11若点M(1,m)和点N(4,n)在直
4、线y=x+b上,则m_n(填、或=)12如图,已知点A是一次函数yx(x0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y (x0)的图象过点B,C,若OAB的面积为5,则ABC的面积是_13如图,在ABC中,C=40,CA=CB,则ABC的外角ABD= 14某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.15小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 16如图,线段 AB 的长为 4,C 为 AB 上一个
5、动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_三、解答题(共8题,共72分)17(8分)如图1,已知抛物线y=ax2+bx(a0)经过A(6,0)、B(8,8)两点(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足PODNOB的点P坐标(点P、O、D分别与点N、O、B对应) 18(8分)如图,已知O经过ABC的顶点A、B,交边BC于点D,点
6、A恰为的中点,且BD8,AC9,sinC,求O的半径19(8分)解方程20(8分)某公司为了扩大经营,决定购进6台机器用于生产某活塞现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060 (1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?21(8分)已知:如图,在菱形中,点,分别为,的中点,连接,求证:;当与满足什么关系时,四边形是正方形?请说明理由22(10分)为加快城乡对接,建设美丽乡村
7、,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC80千米,A45,B30开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)23(12分)先化简,再求值:2(m1)2+3(2m+1),其中m是方程2x2+2x1=0的根24解方程组参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】,.故选C.2、C【解析】试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.故选C
8、考点:三视图3、C【解析】根据比较实数大小的方法进行比较即可根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小4、C【解析】由ABC与DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案【详解】ABC与DEF相似,相似比为2:3,这两个三角形的面积比为4:1故选C【点睛】此题考查了相似三角形的性质注意相似三角形的面积比等于相似比的平方5、D【解析】分两种情况进行讨论:弦AB和CD在圆
9、心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:当弦AB和CD在圆心同侧时,如图1,AB=24cm,CD=10cm,AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=12-5=7cm;四边形ACDB的面积 当弦AB和CD在圆心异侧时,如图2,AB=24cm,CD=10cm,.AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=OF+OE=17cm.四边形ACDB的面积四边形ACDB的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.
10、此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.6、B【解析】【分析】根据同一时刻物高与影长成正比可得出结论【详解】设竹竿的长度为x尺,竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,解得x=45(尺),故选B【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键7、A【解析】分式有意义时,分母a-40【详解】依题意得:a40,解得a4.故选:A【点睛】此题考查分式有意义的条件,难度不大8、A【解析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明
11、确了等量关系再列方程就不那么难了【详解】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,可得方程为:2(x-1)+3x=1故选A【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元9、B【解析】当k0时,一次函数y=kxk的图象过一、三、四象限,反比例函数y=的图象在一、三象限,A、C不符合题意,B符合题意;当k0时,一次函数y=kxk的图象过一、二、四象限,反比例函数y=的图象在二、四象限,D不符合题意故选B10、C【解析】作MHAC于H,如图,根据正方形的性质得MAH
12、=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角
13、形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形也考查了角平分线的性质和正方形的性质二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据一次函数的性质,k0时,y随x的增大而减小.【详解】因为k=0,所以函数值y随x的增大而减小,因为1n.故答案为:【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数的性质.12、 【解析】如图,过C作CDy轴于D,交AB于E设AB=2a,则BE=AE=CE=a,再设A(x,x),则B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函数的
14、图象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由OAB的面积为5求得ax=5,即可得a2=,根据SABC=ABCE即可求解.【详解】如图,过C作CDy轴于D,交AB于EABx轴,CDAB,ABC是等腰直角三角形,BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),B、C在反比例函数的图象上,x(x+2a)=(x+a)(x+a),解得x=3a,SOAB=ABDE=2ax=5,ax=5,3a2=5,a2=,SABC=ABCE=2aa=a2=故答案为:【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、
15、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键13、110【解析】试题解析:解:C40,CACB,AABC70,ABDAC110.考点:等腰三角形的性质、三角形外角的性质点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.14、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平
16、均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,增长用+,减少用-但要注意解的取舍,及每一次增长的基础15、【解析】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为考点:概率公式16、2【解析】试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,=16;,得出考点:不等式的性质点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题
17、的关键三、解答题(共8题,共72分)17、(1)抛物线的解析式是y=x23x;(2)D点的坐标为(4,4);(3)点P的坐标是()或()【解析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线AB的解析式,进而由P1ODNOB,得出P1ODN1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标试题解析:(1)抛物线y=ax2+bx(a0)经过A(6,0)、B(8,8)将A与B两点坐标代入得:,解得:,抛物线的解析式是y=x23x (2)设直线OB的解析式为y=k1
18、x,由点B(8,8),得:8=8k1,解得:k1=1 直线OB的解析式为y=x, 直线OB向下平移m个单位长度后的解析式为:y=xm,xm=x23x, 抛物线与直线只有一个公共点, =162m=0,解得:m=8, 此时x1=x2=4,y=x23x=4, D点的坐标为(4,4)(3)直线OB的解析式为y=x,且A(6,0),点A关于直线OB的对称点A的坐标是(0,6),根据轴对称性质和三线合一性质得出ABO=ABO,设直线AB的解析式为y=k2x+6,过点(8,8),8k2+6=8,解得:k2= , 直线AB的解析式是y=,NBO=ABO,ABO=ABO, BA和BN重合,即点N在直线AB上,设
19、点N(n,),又点N在抛物线y=x23x上,=n23n, 解得:n1=,n2=8(不合题意,舍去)N点的坐标为(,)如图1,将NOB沿x轴翻折,得到N1OB1, 则N1(,-),B1(8,8),O、D、B1都在直线y=x上P1ODNOB,NOBN1OB1, P1ODN1OB1, 点P1的坐标为()将OP1D沿直线y=x翻折,可得另一个满足条件的点P2(),综上所述,点P的坐标是()或()【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键18、O的半径为【解析】如图,连接OA交BC于H首先证明OABC,
20、在RtACH中,求出AH,设O的半径为r,在RtBOH中,根据BH2+OH2OB2,构建方程即可解决问题。【详解】解:如图,连接OA交BC于H点A为的中点,OABD,BHDH4,AHCBHO90,AC9,AH3,设O的半径为r,在RtBOH中,BH2+OH2OB2,42+(r3)2r2,r,O的半径为【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题19、原分式方程无解.【解析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x1)(x+2),得x(x+2)
21、(x1)(x+2)3即:x2+2xx2x+23整理,得x1检验:当x1时,(x1)(x+2)0,原方程无解【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法20、(1)有3种购买方案购乙6台,购甲1台,购乙5台,购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数34万元就可以得到关于x的不等式,就可以求出x的范围(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数
22、380件根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案【详解】解:(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)34解这个不等式,得x2,即x可取0,1,2三个值.该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)380解之得x 由(1)得x2,即x2.x可取1,2俩值.即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为17+55=32万元;购买甲种机器
23、2台,购买乙种机器4台,所耗资金为27+45=34万元. 为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案21、见解析【解析】(1)由菱形的性质得出BD,ABBCDCAD,由已知和三角形中位线定理证出AEBEDFAF,OFDC,OEBC,OEBC,由(SAS)证明BCEDCF即可;(2)由(1)得:AEOEOFAF,证出四边形AEOF是菱形,再证出AEO90,四边形AEOF是正方形【详解】(1)证明:四边形ABCD是菱形,BD,ABBCDCAD,点E,O,F分别为AB,AC,AD的中点,AEBED
24、FAF,OFDC,OEBC,OEBC,在BCE和DCF中,,BCEDCF(SAS);(2)当ABBC时,四边形AEOF是正方形,理由如下:由(1)得:AEOEOFAF,四边形AEOF是菱形,ABBC,OEBC,OEAB,AEO90,四边形AEOF是正方形.【点睛】本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.22、 (1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为40+40()千米【解析】(1)过点C作AB的垂线CD,垂足为D,在直角ACD中,解直角三角形求出CD,进而解答即可;(2)在直角CB
25、D中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程【详解】(1)过点C作AB的垂线CD,垂足为D,ABCD,sin30,BC80千米,CDBCsin308040(千米),AC(千米),AC+BC80+(千米),答:开通隧道前,汽车从A地到B地要走(80+)千米;(2)cos30,BC80(千米),BDBCcos3080(千米),tan45,CD40(千米),AD(千米),ABAD+BD40+(千米),汽车从A地到B地比原来少走多少路程为:AC+BCAB80+4040+40(千米)答:汽车从A地到B地比原来少走的路程为 40+40千米【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线23、2m2+2m+5;1;【解析】先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可【详解】解:原式=2(m22m+1)+1m+3,=2m24m+2+1m+3=2m2+2m+5,m是方程2x2+2x1=0的根,2m2+2m1=0,即2m2+2m=1,原式=2m2+2m+5=1【点睛】此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.24、【解析】解:由得把代入得把代人得原方程组的解为
限制150内