江西省南昌县莲塘一中2022-2023学年高考数学一模试卷含解析.doc
《江西省南昌县莲塘一中2022-2023学年高考数学一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省南昌县莲塘一中2022-2023学年高考数学一模试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若集合,则( )ABCD2的内角的对边分别为,若,则内角( )ABCD3已知集合Ay|y,Bx|ylg(x2x2),则R(AB)( )A0,)B(,0),+)C(0,)D(,0,+)4设,均
2、为非零的平面向量,则“存在负数,使得”是“”的A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件5已知函数为奇函数,则( )AB1C2D36已知复数,其中为虚数单位,则( )ABC2D7关于函数在区间的单调性,下列叙述正确的是( )A单调递增B单调递减C先递减后递增D先递增后递减8tan570=( )AB-CD9我国古代数学名著数书九章中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:平地降雨量等于盆中积水体积除以盆口面积;一尺等于十寸;台体的体积公式).A2寸B3寸C4寸
3、D5寸10设复数满足,在复平面内对应的点为,则不可能为( )ABCD11已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为( )ABCD12设实数、满足约束条件,则的最小值为( )A2B24C16D14二、填空题:本题共4小题,每小题5分,共20分。13已知函数若关于的不等式的解集是,则的值为_14设等差数列的前项和为,若,则数列的公差_,通项公式_.15某次足球比赛中,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率0.40.3
4、0.8获胜概率0.60.70.5获胜概率0.70.30.3获胜概率0.20.50.7则队获得冠军的概率为_.16已知是同一球面上的四个点,其中平面,是正三角形,则该球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广
5、大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为3
6、0元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;.)18(12分)已知函数(,)满足下列3个条件中的2个条件:函数的周期为;是函数的对称轴;且在区间上单调.()请指出这二个条件,并求出函数的解析式;()若,求函数的值域.19(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.20(12分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.01
7、6.515.513.812.2(1)求y关于x的线性回归方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式: 21(12分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,求四边形面积的最大值22(10分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据正弦
8、函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【详解】依题意,;而,故,则.故选:B.【点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.2、C【解析】由正弦定理化边为角,由三角函数恒等变换可得【详解】,由正弦定理可得,三角形中,故选:C【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键3、D【解析】求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合Ay|yy|y00,+);Bx|ylg(x2x2)x|x2x20x|0x(0,),AB(0,),R(AB)(,0,+).故选:
9、D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.4、B【解析】根据充分条件、必要条件的定义进行分析、判断后可得结论【详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立所以“存在负数,使得”是“”的充分不必要条件故选B【点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确5、B【解析】根据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省 南昌县 一中 2022 2023 学年 高考 数学 试卷 解析
限制150内