《江西省宜春市重点中学2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江西省宜春市重点中学2022-2023学年中考一模数学试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则NOF的度数为( )A50B60C70D802下列图
2、形中既是中心对称图形又是轴对称图形的是ABCD3下列实数中是无理数的是()AB22C5.Dsin454如图,ABC中,C=90,D、E是AB、BC上两点,将ABC沿DE折叠,使点B落在AC边上点F处,并且DFBC,若CF=3,BC=9,则AB的长是( ) AB15CD95某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有() A180人 B117人 C215人 D257人6下列计算正确的是( ).A(x+y)2=x2+y2B(xy2)3= x3y6Cx6x3=x2D=27已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )A
3、3或6B1或6C1或3D4或68已知一元二次方程ax2+ax40有一个根是2,则a值是()A2BC2D49下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()Ay=(x2)2+1 By=(x+2)2+1Cy=(x2)23 Dy=(x+2)2310如图,ABC中,B=55,C=30,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则BAD的度数为( )A65B60C55D4511如图,反比例函数(x0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )A1B2C3D
4、412如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )ABC5cosD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,边长为6cm的正三角形内接于O,则阴影部分的面积为(结果保留)_14在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m1,7),若线段AB与直线y2x1相交,则m的取值范围为_15菱形的两条对角线长分别是方程的两实根,则菱形的面积为_16已知数据x1,x2,xn的平均数是,则一组新数据x1+8,x2+8,xn+8的平均数是_.17如图,AB是O的直径,且经过弦CD的中点H,过CD延长线上一点E作O的切
5、线,切点为F若ACF=65,则E= 18如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园两人同时从学校出发,以a米/分的速度匀速行驶出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙甲追上乙后,两人以相同的速度前往净月潭乙骑自行车的速度始终不变设甲、乙两名大学生距学校的路程为s(米),乙同学行驶的时间为
6、t(分),s与t之间的函数图象如图所示 (1)求a、b的值 (2)求甲追上乙时,距学校的路程 (3)当两人相距500米时,直接写出t的值是 20(6分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O(1)若AP=1,则AE= ;(2)求证:点O一定在APE的外接圆上;当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值21(6分)如图,在平面直角坐标系中
7、,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值22(8分)如图,ABC内接与O,AB是直径,O的切线PC交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF判断AF与O的位置关系并说明理由;若O的半径为4,AF=3,求AC的
8、长23(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.24(10分)如图,AD是ABC的中线,AD12,AB13,BC10,求AC长25(10分)如图,ABC内接于O,CD是O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且B=2P(1)求证
9、:PA是O的切线;(2)若PD=,求O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长26(12分)如图,已知在梯形ABCD中,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.27(12分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍(1)求温馨提示牌
10、和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:OM=60海里,ON=80海里,MN=100海里,OM2+ON2=MN2,MON=90,EOM=20,NOF=1802090=70故选C【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键2、B【解析】根据轴对称图形与中心对称图形的概念,轴对称图
11、形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意故选B3、D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D4、C【解析】由折叠得到EB=EF,B=DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x
12、的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长【详解】由折叠得到EB=EF,B=DFE,在RtECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,EF=EB=5,CE=4,FDBC,DFE=FEC,FEC=B,EFAB,则AB=,故选C【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键5、B【解
13、析】设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.【详解】设男生为x人,则女生有65%x人,由题意得,x+65%x=297,解之得x=180,297-180=117人.故选B.【点睛】本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.6、D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可详解:(x+y)2=x2+2xy+y2,A错误;(-xy2)3=-x3y6,B错误;x6x3=x3,C错误;=2,D正确;故选D点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握
14、完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键7、B【解析】分析:分h2、2h5和h5三种情况考虑:当h2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2h5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论综上即可得出结论详解:如图,当h2时,有-(2-h)2=-1, 解得:h1=1,h2=3(舍去);当2h5时,y=-(x-h)2的最大值为0,不符合题意;当h5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=1综上所述:h的值为1或1故选B点睛:本
15、题考查了二次函数的最值以及二次函数的性质,分h2、2h5和h5三种情况求出h值是解题的关键8、C【解析】分析:将x=2代入方程即可求出a的值详解:将x=2代入可得:4a2a4=0, 解得:a=2,故选C点睛:本题主要考查的是解一元一次方程,属于基础题型解方程的一般方法的掌握是解题的关键9、C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为10、A【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到C
16、=DAC,求得DAC=30,根据三角形的内角和得到BAC=95,即可得到结论【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故C=DAC,C=30,DAC=30,B=55,BAC=95,BAD=BAC-CAD=65,故选A【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键11、C【解析】本题可从反比例函数图象上的点E、M、D入手,分别找出OCE、OAD、矩形OABC的面积与|k|的关系,列出等式求出k值【详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MGy轴于点G,作MNx轴于点N,则SONMG=|k|又M为矩形ABCO对
17、角线的交点,S矩形ABCO=4SONMG=4|k|,函数图象在第一象限,k0,解得:k=1故选C【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注12、D【解析】利用所给的角的余弦值求解即可【详解】BC=5米,CBA=,AB=故选D【点睛】本题主要考查学生对坡度、坡角的理解及运用二、填空题:(本大题共6个小题,每小题4分,共24分)13、(43)cm1【解析】连接OB、OC,作OHBC于H,根据圆周角定理可知BOC的度数,根据等边三角形的性质可求出OB、OH的长度,利用阴影面积=
18、S扇形OBC-SOBC即可得答案【详解】:连接OB、OC,作OHBC于H,则BH=HC= BC= 3,ABC为等边三角形,A=60,由圆周角定理得,BOC=1A=110,OB=OC,OBC=30,OB=1 ,OH=,阴影部分的面积= 6=43 ,故答案为:(43)cm1【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.14、4m1【解析】先求出直线y7与直线y2x1的交点为(4,7),再分类讨论:当点B在点A的右侧,则m43m1,当点B在点A的左侧,则3m14m,然后分别解关于m的不等式组即可【详解】解:当y
19、7时,2x17,解得x4,所以直线y7与直线y2x1的交点为(4,7),当点B在点A的右侧,则m43m1,无解;当点B在点A的左侧,则3m14m,解得4m1,所以m的取值范围为4m1,故答案为4m1【点睛】本题考查了一次函数图象上点的坐标特征,根据直线y2x1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键15、2【解析】解:x214x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1所以菱形的面积为:(61)2=2菱形的面积为:2故答案为2点睛:本题考查菱形的性质菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系16、【解析】根据数据x1,x2,
20、xn的平均数为=(x1+x2+xn),即可求出数据x1+1,x2+1,xn+1的平均数【详解】数据x1+1,x2+1,xn+1的平均数=(x1+1+x2+1+xn+1)=(x1+x2+xn)+1=+1故答案为+1【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标17、50【解析】解:连接DF,连接AF交CE于G,EF为O的切线,OFE=90,AB为直径,H为CD的中点ABCD,即BHE=90,ACF=65,AOF=130,E=360-BHE-OFE-AOF=50,故答案为:50.18、.【解析】试
21、题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,BODCOD60,所以,三角形OCD为等边三角形,所以,半圆O的半径为OCCD2,S扇形OBDC,SOBC,S弓形CDS扇形ODCSODC,所以阴影部分的面积为为S().考点:扇形的面积计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)a的值为200,b 的值为30;(2)甲追上乙时,与学校的距离4100米;(3)1.1或17.1【解析】(1)根据速度=路程时间,即可解决问题(2)首先求出甲返回用的时间,再列出方程即可解决问题(3)分两种情形列出方程即可解决问题【详解】解:(1)由题意a
22、=200,b=30,a=200,b=30.(2) +4.1=7.1,设t分钟甲追上乙,由题意,300(t7.1)=200t,解得t=22.1,22.1200=4100,甲追上乙时,距学校的路程4100米(3)两人相距100米是的时间为t分钟由题意:1.1200(t4.1)+200(t4.1)=100,解得t=1.1分钟,或300(t7.1)+100=200t,解得t=17.1分钟,故答案为1.1分钟或17.1分钟点睛:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析即图象的变化趋势得出函数的类型和所需要的条件,结合实际意义得到正确的结论.20
23、、(1);(2)证明见解析;(3)【解析】试题分析:(1)由正方形的性质得出A=B=EPG=90,PFEG,AB=BC=4,OEP=45,由角的互余关系证出AEP=PBC,得出APEBCP,得出对应边成比例即可求出AE的长;(2)A、P、O、E四点共圆,即可得出结论;连接OA、AC,由勾股定理求出AC=,由圆周角定理得出OAP=OEP=45,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设APE的外接圆的圆心为M,作MNAB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为
24、1,得出MN的最大值=即可试题解析:(1)四边形ABCD、四边形PEFG是正方形,A=B=EPG=90,PFEG,AB=BC=4,OEP=45,AEP+APE=90,BPC+APE=90,AEP=PBC,APEBCP,即,解得:AE=,故答案为:;(2)PFEG,EOF=90,EOF+A=180,A、P、O、E四点共圆,点O一定在APE的外接圆上;连接OA、AC,如图1所示:四边形ABCD是正方形,B=90,BAC=45,AC=,A、P、O、E四点共圆,OAP=OEP=45,点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设APE的外接圆的圆心为M,作
25、MNAB于N,如图2所示:则MNAE,ME=MP,AN=PN,MN=AE,设AP=x,则BP=4x,由(1)得:APEBCP,即,解得:AE= =,x=2时,AE的最大值为1,此时MN的值最大=1=,即APE的圆心到AB边的距离的最大值为【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明APEBCP是解题的关键.21、(1)A(,0)、B(3,0)(2)存在SPBC最大值为 (3)或时,BDM为直角三角形【解析】(1)在中令y=0,即可得到A、B两点的坐标(2)先用待定系数法得到抛物线C1的解析式,由SPBC = SPOC+ SBOPSBOC得到PBC面积的表达式,根据二次函
26、数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90时;BDM=90时,讨论即可求得m的值【详解】解:(1)令y=0,则,m0,解得:,A(,0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=0,当时,SPBC最大值为(3)由C2可知: B(3,0),D(0,),M(1,),BD2=,BM2=,DM2=MBD0且x是整数) (2)6000件【解析】(1)本题的等量关系是:纯利润=产品的出厂单价产品的数量-产品的成本价产品的数量-生产过程中的污水处理
27、费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;(2)根据(1)中得出的式子,将y的值代入其中,求出x即可【详解】(1)依题意得:y=80x-60x-0.5x2-1,化简得:y=19x-1,所求的函数关系式为y=19x-1(x0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,这个月该厂生产产品6000件【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解24、2.【解析】根据勾股定理逆定理,证ABD是直角三角形,得ADBC,可证AD垂直平分BC,所以AB=AC.【详解】解:AD是A
28、BC的中线,且BC=10,BD=BC=112+122=22,即BD2+AD2=AB2,ABD是直角三角形,则ADBC,又CD=BD,AC=AB=2【点睛】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.25、(1)证明见解析;(2);(3);【解析】(1)连接OA、AD,如图,利用圆周角定理得到B=ADC,则可证明ADC=2ACP,利用CD为直径得到DAC=90,从而得到ADC=60,C=30,则AOP=60,于是可证明OAP=90,然后根据切线的判断定理得到结论;(2)利用P=30得到OP=2OA,则,从而得到O的直径;(3)作EHAD于H,如图,由点
29、B等分半圆CD得到BAC=45,则DAE=45,设DH=x,则DE=2x,所以 然后求出x即可得到DE的长【详解】(1)证明:连接OA、AD,如图,B=2P,B=ADC,ADC=2P,AP=AC,P=ACP,ADC=2ACP,CD为直径,DAC=90,ADC=60,C=30,ADO为等边三角形,AOP=60,而P=ACP=30,OAP=90,OAPA,PA是O的切线;(2)解:在RtOAP中,P=30,OP=2OA,O的直径为;(3)解:作EHAD于H,如图,点B等分半圆CD,BAC=45,DAE=45,设DH=x,在RtDHE中,DE=2x,在RtAHE中, 即解得 【点睛】本题考查了切线的
30、判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理26、(1)见解析;(2);(3)当或8时,与相似.【解析】(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【详解】(1)证明:四边形ABCD是等腰梯形,.(2)解:作于M,于N.则四边形是矩形.在中,.(3)解:,相似时,与相似,当时,此时,当时
31、,此时,综上所述,当PB=5或8时,与相似.【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.27、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+33x=550,x=50,经检验,符合题意,3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100y)个,根据题意得,意, y为正整数,y为50,51,52,共3中方案;有三种方案:温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,设总费用为w元W=50y+150(100y)=100y+15000,k=-100,w随y的增大而减小当y=52时,所需资金最少,最少是9800元【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键
限制150内