《江西省上2023年高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省上2023年高三第二次模拟考试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数则函数的图象的对称轴方程为( )ABCD2已知函数,则( )AB1C-1D03一个组合体的三视图如图所示(图中网格
2、小正方形的边长为1),则该几何体的体积是( )ABCD4过抛物线的焦点且与的对称轴垂直的直线与交于,两点,为的准线上的一点,则的面积为( )A1B2C4D85已知集合,集合,则等于( )ABCD6以下关于的命题,正确的是A函数在区间上单调递增B直线需是函数图象的一条对称轴C点是函数图象的一个对称中心D将函数图象向左平移需个单位,可得到的图象7当时,函数的图象大致是( )ABCD8已知函数,关于的方程R)有四个相异的实数根,则的取值范围是()ABCD9已知函数是定义在上的奇函数,函数满足,且时,则( )A2BC1D10如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动, 且总是平行于
3、轴, 则的周长的取值范围是( )ABCD11记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为( )ABCD12过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为3,且,则抛物线的方程是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,在菱形ABCD中,AB=3,E,F分别为BC,CD上的点,若线段EF上存在一点M,使得,则_,_(本题第1空2分,第2空3分)14设实数,若函数的最大值为,则实数的最大值为_.15已知集合,若,且,则实数所有的可能取值构成的集合是_.16已知集合,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算
4、步骤。17(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.()求曲线的普通方程与直线的直角坐标方程;()已知直线与曲线交于,两点,与轴交于点,求.18(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.19(12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格
5、,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.02420(12分)如图,在中,的角平分线与交于点,.()求;()求的面积.21(12分)如图,在底面边长为1,侧棱长为2的
6、正四棱柱中,P是侧棱上的一点,.(1)若,求直线AP与平面所成角;(2)在线段上是否存在一个定点Q,使得对任意的实数m,都有,并证明你的结论.22(10分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立月总成本与月产量之间的回归方程;通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万
7、元?(均精确到0.001)附注:参考数据:,.参考公式:相关系数,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】,将看成一个整体,结合的对称性即可得到答案.【详解】由已知,令,得.故选:C.【点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.2、A【解析】由函数,求得,进而求得的值,得到答案.【详解】由题意函数,则,所以,故选A.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,
8、属于基础题.3、C【解析】根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.4、C【解析】设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积【详解】设抛物线的解析
9、式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,是与的交点,又轴,可设点坐标为,代入,解得,又点在准线上,设过点的的垂线与交于点,.故应选C.【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值本题难度一般5、B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.6、D【解析】利用辅助角公式化简函数得到,再逐项判断正误得到答案.【详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,不是对称中心,错误D
10、选项,图象向左平移需个单位得到,正确故答案选D【点睛】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.7、B【解析】由,解得,即或,函数有两个零点,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点
11、以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.8、A【解析】=,当时时,单调递减,时,单调递增,且当,当,当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,即.9、D【解析】说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值【详解】由知函数的周期为4,又是奇函数,又,故选:D【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础10、B【解析】根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【详解】抛物线,则焦点,准线方程为,根据抛物线定义可
12、得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.11、C【解析】据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案【详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,表示的平面区域即为图中的,根据几何概率的计算公式可得,故选:C【点睛】本题主要考查了几何概率的计算
13、,本题是与面积有关的几何概率模型解决本题的关键是要准确求出两区域的面积12、B【解析】利用抛物线的定义可得,把线段AB中点的横坐标为3,代入可得p值,然后可得出抛物线的方程.【详解】设抛物线的焦点为F,设点,由抛物线的定义可知,线段AB中点的横坐标为3,又,可得,所以抛物线方程为.故选:B.【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】根据题意,设,则,所以,解得,所以,从而有 .14、【解析】根据,则当时,即.当时,显然成立;当时,由,转化为,令,用导数法求其最大值即可.【详解】因为,
14、又当时,即.当时,显然成立;当时,由等价于,令,当时,单调递增,当时,单调递减,则,又,得,因此的最大值为.故答案为:【点睛】本题主要考查导数在函数中的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.15、.【解析】化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.16、【解析】直接根据集合和集合求交集即可.【详解】解: ,所以.故答案为: 【点睛】本题考查集合的交集运算,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程
15、或演算步骤。17、(1)(x1)2y24,直线l的直角坐标方程为xy20;(2)3.【解析】(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【详解】(1)由曲线C的参数方程 (为参数) (为参数),两式平方相加,得曲线C的普通方程为(x1)2y24;由直线l的极坐标方程可得coscossinsincossin2,即直线l的直角坐标方程为xy20.(2)由题意可得P(2,0),则直线l的参数方程为 (t为参数)设A,B两点对应的参数
16、分别为t1,t2,则|PA|PB|t1|t2|,将 (t为参数)代入(x1)2y24,得t2t30,则0,由韦达定理可得t1t23,所以|PA|PB|3|3.18、(1)(2)【解析】(1)利用极坐标和直角坐标的互化公式,,即可求得结果.(2) 由的几何意义得,. 将代入抛物线C的方程,利用韦达定理,即可求得结果.【详解】(1)因为,代入得,所以抛物线C的极坐标方程为.(2)将代入抛物线C的方程得,所以,所以,由的几何意义得,.【点睛】本题考查直角坐标和极坐标的转化,考查极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,难度一般.19、(1)见解析;(2)在犯错误的概率不超
17、过0.10的前提下认为“性别与测评结果有关系”(3)见解析.【解析】(1)由已知抽取的人中优秀人数为20,这样结合已知可得列联表;(2)根据列联表计算,比较后可得;(3)由于性别对结果有影响,因此用分层抽样法【详解】解:(1)优秀合格总计男生62228女生141832合计204060(2)由于,因此在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”.(3)由(2)可知性别有可能对是否优秀有影响,所以采用分层抽样按男女生比例抽取一定的学生,这样得到的结果对学生在该维度的总体表现情况会比较符合实际情况.【点睛】本题考查独立性检验,考查分层抽样的性质考查学生的数据处理能力属于中档题20
18、、();().【解析】试题分析:()在中,由余弦定理得,由正弦定理得,可得解;()由()可知,进而得,在中,由正弦定理得,所以的面积即可得解.试题解析:()在中,由余弦定理得 ,所以,由正弦定理得,所以.()由()可知.在中, .在中,由正弦定理得,所以.所以的面积.21、(1);(2)存在, Q为线段中点【解析】解法一:(1)作出平面与平面的交线,可证平面,计算,得出,从而得出的大小;(2)证明平面,故而可得当Q为线段的中点时.解法二,以为原点,以为建立空间直角坐标系:(1)由,利用空间向量的数量积可求线面角;(2)设上存在一定点Q,设此点的横坐标为,可得,由向量垂直,数量积等于零即可求解.
19、【详解】(1)解法一:连接交于,设与平面的公共点为,连接,则平面平面,四边形是正方形,平面,平面,又,平面,为直线AP与平面所成角,平面,平面,平面平面,又为的中点,直线AP与平面所成角为.(2)四边形正方形,平面,平面, ,又,平面,又平面, ,当Q为线段中点时,对于任意的实数,都有. 解法二:(1)建立如图所示的空间直角坐标系,则,所以, 又由,则为平面的一个法向量,设直线AP与平面所成角为,则,故当时,直线AP与平面所成角为.(2)若在上存在一定点Q,设此点的横坐标为,则,依题意,对于任意的实数要使, 等价于,即,解得,即当Q为线段中点时,对于任意的实数,都有.【点睛】本题考查了线面垂直的判定定理、线面角的计算,考查了空间向量在立体几何中的应用,属于中档题.22、(1)见解析;(2)3.386(万元)【解析】(1)利用代入数值,求出后即可得解;(2)计算出、后,利用求出后即可得解;把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,说明与正相关,且相关性很强.(2)由已知求得,所以,所求回归直线方程为.当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.
限制150内