江西省赣州市寻乌中学2023年高考数学一模试卷含解析.doc
《江西省赣州市寻乌中学2023年高考数学一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省赣州市寻乌中学2023年高考数学一模试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为( )ABCD2已知数列中,(),则等于( )ABCD23已知定义在R上的偶函数满足,当
2、时,函数(),则函数与函数的图象的所有交点的横坐标之和为( )A2B4C5D64数列的通项公式为则“”是“为递增数列”的( )条件A必要而不充分B充要C充分而不必要D即不充分也不必要5已知集合,则中元素的个数为( )A3B2C1D06某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有( )A480种B360种C240种D120种7已知,且,则( )ABCD8设集合A=4,5,7,9,B=3,4,7,8,9
3、,全集U=AB,则集合中的元素共有 ( )A3个B4个C5个D6个9已知定义在R上的函数(m为实数)为偶函数,记,则a,b,c的大小关系为( )ABCD10设a,b,c为正数,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不修要条件11已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD12函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位二、填空题:本题共4小题,每小题5分,共20分。13易经是中国传统文化中的精髓,如图是
4、易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_.14将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是_15在中,角的对边分别为,且若为钝角,则的面积为_16已知数列是等比数列,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点(1)写出曲线C的一般方程;(2)求的最小值18(12分)已知,(其中).(1)求;(2)求
5、证:当时,19(12分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L(1)试用x,y表示L;(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?20(12分)如图为某大江的一段支流,岸线与近似满足,宽度为圆为江中的一个半
6、径为的小岛,小镇位于岸线上,且满足岸线,现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切设 (1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?21(12分)设函数.(1)时,求的单调区间;(2)当时,设的最小值为,若恒成立,求实数t的取值范围.22(10分)如图,直三棱柱中,底面为等腰直角三角形,分别为,的中点,为棱上一点,若平面.(1)求线段的长;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
7、要求的。1、C【解析】如图所示:切点为,连接,作轴于,计算,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,故,在中,故,故,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.2、A【解析】分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:,(),数列是以3为周期的周期数列,故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.3、B【解析】由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两
8、两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.4、A【解析】根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.【详解】若“是递增数列”,则,即,化简得:,又,则是递增数列,是递增数列,“”是“为递增数列”的必要不充分条件故选:.【点睛】本题考查充
9、分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.5、C【解析】集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.6、B【解析】将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,共有360种.故选:B【点睛】本小题主要考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省 赣州市 寻乌 中学 2023 年高 数学 试卷 解析
限制150内