《江西省上饶市余干县重点达标名校2023年中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省上饶市余干县重点达标名校2023年中考数学最后一模试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A1一定不是关于x的方程x2+bx+a=0的根B0一定不是关于x的方程x2+bx+a=0的根C1和1都是关于x的方程x2+bx+a=0的根D1和1不都是关于x的方程x2+bx+a=0的根2如
2、图,已知ABC中,ABC=45,F是高AD和BE的交点,CD=4,则线段DF的长度为( )AB4CD3已知矩形ABCD中,AB3,BC4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2()A6BC12D124语文课程标准规定:79年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著那么260万用科学记数法可表示为()A26105B2.6102C2.6106D2601045已知x=2,则代数式(7+4)x2+(2+)x+ 的值是()A0BC2+D26如图,以
3、AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在AOB内部交于点E,过点E作射线OE,连接CD则下列说法错误的是A射线OE是AOB的平分线BCOD是等腰三角形CC、D两点关于OE所在直线对称DO、E两点关于CD所在直线对称7下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A2B1C0D18某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()ABCD9已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是Ax11,x21Bx
4、11,x22Cx11,x20Dx11,x2310若a与5互为倒数,则a=( )AB5C-5D二、填空题(共7小题,每小题3分,满分21分)11如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_.12如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= 13化简=_14将一张长方形纸片折叠成如图所示的形状,若DBC=56,则1=
5、_15如图,PA,PB是O是切线,A,B为切点,AC是O的直径,若P=46,则BAC= 度16新定义a,b为一次函数(其中a0,且a,b为实数)的“关联数”,若“关联数”3,m+2所对应的一次函数是正比例函数,则关于x的方程的解为 17已知是锐角,那么cos=_三、解答题(共7小题,满分69分)18(10分)解不等式组,并把它的解集表示在数轴上19(5分)在平面直角坐标系xOy中,将抛物线(m0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点(1)直接写出点A的坐标;(2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点当BAC90时求抛物线G2的表达式;若60BAC12
6、0,直接写出m的取值范围20(8分)如图1,在直角梯形ABCD中,动点P从B点出发,沿BCDA匀速运动,设点P运动的路程为x,ABP的面积为y,图象如图2所示(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P运动的路程x4时,ABP的面积为y ;(3)求AB的长和梯形ABCD的面积21(10分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到ACD,再将ACD沿DB方向平移到ACD的位置,若平移开始后点D未到达点B时,AC交CD于E,DC交CB于点F,连接EF,当四边形EDDF为菱形时,试探究ADE的形状,并判断ADE与EFC是否全等?请说明理由22(10分)某中学开
7、学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同(1)求购买一个A种品牌、一个B种品牌的足球各需多少元(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?23
8、(12分)先化简,再求值:,其中.24(14分)如图,已知二次函数的图象经过,两点求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,求的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根再结合a+1-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根【详解】关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,b=a+1或b=-(a+1)当b=a
9、+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根a+10,a+1-(a+1),1和-1不都是关于x的方程x2+bx+a=0的根故选D【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当=0时,方程有两个相等的实数根”是解题的关键2、B【解析】求出ADBD,根据FBDC90,CADC90,推出FBDCAD,根据ASA证FBDCAD,推出CDDF即可【详解】解:ADBC,BEAC,ADB=AEB=ADC=90,EAF+AFE=90,FBD+BFD=90,AFE=BFD,EAF=FBD,ADB=90,A
10、BC=45,BAD=45=ABC,AD=BD,在ADC和BDF中 ,ADCBDF,DF=CD=4,故选:B【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件3、D【解析】根据题意可得到CE=2,然后根据S1S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【详解】解:BC4,E为BC的中点,CE2,S1S234 ,故选D【点睛】此题考查扇形面积的计算,矩形的性质及面积的计算.4、C【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,
11、n是负数【详解】260万=2600000=故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值5、C【解析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2时,(7+4)x2+(2+)x+ (7+4)(2)2+(2+)(2)+ (7+4)(7-4)+1+ 49-48+1+2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算6、D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE在EOC与EOD中,OC=OD,CE=DE,OE=O
12、E,EOCEOD(SSS)AOE=BOE,即射线OE是AOB的平分线,正确,不符合题意B、根据作图得到OC=OD,COD是等腰三角形,正确,不符合题意C、根据作图得到OC=OD,又射线OE平分AOB,OE是CD的垂直平分线C、D两点关于OE所在直线对称,正确,不符合题意D、根据作图不能得出CD平分OE,CD不是OE的平分线,O、E两点关于CD所在直线不对称,错误,符合题意故选D7、A【解析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解【详解】|-1|=1,|-1|=1,|-1|-1|=10,四个数表示在数轴上,它们对应的点中,离原点最远的是-1故选A【点睛】本题
13、考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想8、C【解析】根据中位数的定义解答即可【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1所以这些运动员跳高成绩的中位数是1.1故选:C【点睛】本题考查了中位数的意义中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数9、B【解析】试题分析:二次函数(m为常数)的图象与x轴的一个交点为(1,0),故选B10、A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案详解:根据题意可得:5a=1,解得:a=, 故选A点睛
14、:本题主要考查的是倒数的定义,属于基础题型理解倒数的定义是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、2【解析】分析:由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,设高为h,则62h=16,解得:h=1它的表面积是:212+262+162=212、1【解析】先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值【详解】解:根据题意可知,轴,设图中阴影部分的面积从左向右依次为,则,解得:k=2故答案为1考点:反比例函数综合题1
15、3、x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式= =(x+1)(x1)=x+1,故答案为x+1点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.14、62【解析】根据折叠的性质得出2=ABD,利用平角的定义解答即可【详解】解:如图所示:由折叠可得:2=ABD,DBC=56,2+ABD+56=180,解得:2=62,AE/BC,1=2=62,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出2=ABD是关键15、1【解析】由PA、PB是圆O的切线,根据切线长定理得到
16、PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到OAP为直角,再由OAP-PAB即可求出BAC的度数【详解】PA,PB是O是切线,PA=PB.又P=46,PAB=PBA=.又PA是O是切线,AO为半径,OAAP.OAP=90.BAC=OAPPAB=9067=1.故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键16、.【解析】试题分析:根据“关联数”3,m+2所对应的一次函数是正比例函数,得到y=3x+m+2为正比
17、例函数,即m+2=0,解得:m=-2,则分式方程为,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=,经检验x=是分式方程的解考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义17、【解析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可【详解】由sin=知,如果设a=x,则c=2x,结合a2+b2=c2得b=x.cos=.故答案为.【点睛】本题考查的知识点是同角三角函数的关系,解题的关键是熟练的掌握同角三角函数的关系.三、解答题(共7小题,满分69分)18、不等式组的解是x3;图见解析【
18、解析】先求出每个不等式的解集,再求出不等式组的解集即可【详解】解:解不等式,得x3,解不等式,得x1.5,不等式组的解是x3,在数轴上表示为:【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键19、(1)(,2);(2)y(x)22;【解析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;分别求出当BAC=60时,当BAC=120时m的值,即可得出m的取值范围【详解】(1)将抛物线G1:ymx2
19、2(m0)向右平移个单位长度后得到抛物线G2,抛物线G2:ym(x)22,点A是抛物线G2的顶点.点A的坐标为(,2)(2)设抛物线对称轴与直线l交于点D,如图1所示点A是抛物线顶点,ABACBAC90,ABC为等腰直角三角形,CDAD,点C的坐标为(2,)点C在抛物线G2上,m(2)22,解得:依照题意画出图形,如图2所示同理:当BAC60时,点C的坐标为(1,);当BAC120时,点C的坐标为(3,)60BAC120,点(1,)在抛物线G2下方,点(3,)在抛物线G2上方,解得:【点睛】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边
20、三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.20、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1【解析】(1)依据点P运动的路程为x,ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可【详解】(1)点P运动的路程为x,ABP的面积为y,自变量为x,因变量为y故答案为x,y;(2)由图可得:当点P运动的路
21、程x=4时,ABP的面积为y=2故答案为2;(3)根据图象得:BC=4,此时ABP为2,ABBC=2,即AB4=2,解得:AB=8;由图象得:DC=94=5,则S梯形ABCD=BC(DC+AB)=4(5+8)=1【点睛】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键21、ADE是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC先证明CD=DA=DB,得到DAC=DCA,由ACAC即可得到DAE=DEA由此即可判断DAE的形状由EFAB推出CEF=EAD,EFC=ADC=ADE,再根据AD=DE=EF即可证明试题解析:当
22、四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC理由:BCA是直角三角形,ACB=90,AD=DB,CD=DA=DB,DAC=DCA,ACAC,DAE=A,DEA=DCA,DAE=DEA,DA=DE,ADE是等腰三角形四边形DEFD是菱形,EF=DE=DA,EFDD,CEF=DAE,EFC=CDA,CDCD,ADE=ADC=EFC,在ADE和EFC中,ADEEFC考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质22、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元【解析】试题分析:(1)、设A种品牌足球的
23、单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元,解得 (2) 设第二次购买A种足球m个,则购买B种足球(50m)个,解得25m27m为整数 m25、26、27(3) 第二次购买足球时,A种足球单价为50454(元),B种足球单价为800.972当购买B种足球越多时,费用越高 此时255425723150(元)23、,4.【解析】先括号内通分,然后计算除法,最后代入化简即可【详解】原式= . 当时,原式=4.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.24、见解析【解析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值【详解】(1)把,代入得,解得.这个二次函数解析式为.(2)抛物线对称轴为直线,的坐标为,.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式
限制150内