《江西省南昌市重点高中2023年高考数学一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省南昌市重点高中2023年高考数学一模试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点( )A先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变2已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( )A该超市2018年的12个月中的7月份的收益最高B该超市2018年的12个月中的4月份的收益最低C该超市2018年1-6月份
3、的总收益低于2018年7-12月份的总收益D该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元3已知,则下列不等式正确的是( )ABCD4已知是边长为的正三角形,若,则ABCD5已知函数,存在实数,使得,则的最大值为( )ABCD6已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( )A圆,但要去掉两个点B椭圆,但要去掉两个点C双曲线,但要去掉两个点D抛物线,但要去掉两个点7设数列的各项均为正数,前项和为,且,则( )A128B65C64D638已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )ABCD
4、9某几何体的三视图如图所示,则该几何体的体积为( )AB3CD410已知复数是纯虚数,其中是实数,则等于( )ABCD11已知为圆:上任意一点,若线段的垂直平分线交直线于点,则点的轨迹方程为( )ABC()D()12已知,是球的球面上四个不同的点,若,且平面平面,则球的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是_.14某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是_.2至3月份的收入的变化率与11至12月份的收入的变化率相同;支出最高值与支出最低值的比是6:1;第三季度平均收入为50
5、万元;利润最高的月份是2月份15若函数(a0且a1)在定义域m,n上的值域是m2,n2(1mn),则a的取值范围是_16已知等比数列满足,则该数列的前5项的和为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.()证明:平面平面;()求二面角的余弦值.18(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.19(12分)已知函数.()解不等式;()设其中为常数.若方程在上恰有两个不相等的实数根,求实数的取值范围.20(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:
6、.21(12分)已知函数(是自然对数的底数,).(1)求函数的图象在处的切线方程;(2)若函数在区间上单调递增,求实数的取值范围;(3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).22(10分)如图,在四棱锥中,四边形是直角梯形, 底面 ,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对
7、称,得,即,解得,所以,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题2、D【解析】用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个
8、月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.3、D【解析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项【详解】已知,赋值法讨论的情况:(1)当时,令,则,排除B、C选项;(2)当时,令,则,排除A选项.故选:D.【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题4、A【解析】由可得,因为是边长为的正三角形,所以,故选A5、A【解析】画出分段函数图像,可得,由于,构造函数,利用导数研究单调性
9、,分析最值,即得解.【详解】由于,,由于,令,在,故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.6、A【解析】根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.7、D【解析】根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题
10、主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.8、B【解析】由三视图可知,该三棱锥如图, 其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【详解】由三视图可知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B【点睛】本题考查三视图还原几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.9、C【解析】首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体
11、积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【点睛】本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.10、A【解析】对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】 因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.11、B【解析】如图所示:连接,根据垂直平分线知,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,故,
12、故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.12、A【解析】由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案【详解】如图,取BC中点G,连接AG,DG,则,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为故选A【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立
13、,可转化为在上恒成立,进而建立不等式组,解出即可得到答案【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,解得故答案为【点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目14、【解析】通过图片信息直接观察,计算,找出答案即可【详解】对于,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确对于,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确对于,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,
14、故第三季度的平均收入为50万元,正确对于,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是806020万元,错误故答案为【点睛】本题考查利用图象信息,分析归纳得出正确结论,属于基础题目15、 (1,)【解析】在定义域m,n上的值域是m2,n2,等价转化为与的图像在(1,)上恰有两个交点,考虑相切状态可求a的取值范围.【详解】由题意知:与的图像在(1,)上恰有两个交点考查临界情形:与切于,故答案为:.【点睛】本题主要考查导数的几何意义,把已知条件进行等价转化是求解的关键,侧重考查数学抽象的核心素养.16、31【解析】设,可化为,得,三、解答题:共70分。解答应写出文字说明、证明过
15、程或演算步骤。17、()证明见解析;().【解析】() 先证明,再证明平面,利用面面垂直的判定定理,即可求证所求证;()根据题意以为轴、轴、轴建立空间直角坐标系,求出平面和平面的向量,利用公式即可求解.【详解】()证:由已知得又 平面,平面,而故,平面 平面,平面平面()由()知,推理知梯形中,有,又,故所以相似,故有,即所以,以为轴、轴、轴建立如图所示的空间直角坐标系,则 ,设平面的法向量为,则令,则,是平面的一个法向量设平面的一个法向量为 令,则 是平面的一个法向量= 又二面角为钝二面角,其余弦值为.【点睛】本题考查线面、面面垂直的判定定理与性质定理,考查向量法求二面角的余弦值,考查直观想
16、象能力与运算求解能力,属于中档题.18、(1)见解析;(2)见解析【解析】(1)求导得,分类讨论和,利用导数研究含参数的函数单调性;(2)根据(1)中求得的的单调性,得出在处取得最大值为,构造函数,利用导数,推出,即可证明不等式.【详解】解:(1)由于,得,当时,此时在上递增;当时,由,解得,若,则,若,此时在递增,在上递减.(2)由(1)知在处取得最大值为:,设,则,令,则,则在单调递减,即,则在单调递减,.【点睛】本题考查利用导数研究函数的单调性和最值,涉及分类讨论和构造新函数,通过导数证明不等式,考查转化思想和计算能力.19、();().【解析】(I)零点分段法,分,讨论即可;(II),
17、分,三种情况讨论.【详解】原不等式即.当时,化简得.解得;当时,化简得.此时无解;当时,化简得.解得.综上,原不等式的解集为由题意,设方程两根为.当时,方程等价于方程.易知当,方程在上有两个不相等的实数根.此时方程在上无解.满足条件.当时,方程等价于方程,此时方程在上显然没有两个不相等的实数根.当时,易知当,方程在上有且只有一个实数根.此时方程在上也有一个实数根.满足条件.综上,实数的取值范围为.【点睛】本题考查解绝对值不等式以及方程根的个数求参数范围,考查学生的运算能力,是一道中档题.20、(1);(2)见解析.【解析】(1)分、三种情况解不等式,综合可得出原不等式的的解集;(2)利用绝对值
18、三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式成立,涉及绝对值三角不等式的应用,考查运算求解能力,属于中等题.21、(1);(2);(3).【解析】(1)利用导数的几何意义计算即可;(2)在上恒成立,只需,注意到;(3)在上有两根,令,求导可得在上单
19、调递减,在上单调递增,所以且,求出的范围即可.【详解】(1)因为,所以,当时,所以切线方程为,即.(2),.因为函数在区间上单调递增,所以,且恒成立,即,所以,即,又,故,所以实数的取值范围是.(3).因为函数在区间上有两个极值点,所以方程在上有两不等实根,即.令,则,由,得,所以在上单调递减,在上单调递增,所以,解得且.又由,所以,且当和时,单调递增,当时,单调递减,是极值点,此时令,则,所以在上单调递减,所以.因为恒成立,所以.若,取,则,所以.令,则,.当时,;当时,.所以,所以在上单调递增,所以,即存在使得,不合题意.满足条件的的最小值为-4.【点睛】本题考查导数的综合应用,涉及到导数的几何意义,利用导数研究函数的单调性、极值点,不等式恒成立等知识,是一道难题.22、(1)见解析;(2).【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:() 平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面()如图,以点为原点, 分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量设为面的法向量,则,即,取,则依题意,则于是设直线与平面所成角为,则即直线与平面所成角的正弦值为
限制150内