《江西省临川市第一中学2023届高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省临川市第一中学2023届高三第二次联考数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1点为的三条中线的交点,且,则的值为( )ABCD2某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是( )A45B50C55
2、D603中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、为顶点的多边形为正五边形,且,则( )ABCD4若复数是纯虚数,则( )A3B5CD5已知函数满足,当时,则( )A或B或C或D或6已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( )ABCD7已知集合,则的真子集个数为( )A1个B2个C3个D4个8在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )ABCD9设,则( )ABCD10在满足,的实数对中,使得成立的正整数的最大值为( )A5B6C7D911
3、若的展开式中的系数为150,则( )A20B15C10D2512甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A丙被录用了B乙被录用了C甲被录用了D无法确定谁被录用了二、填空题:本题共4小题,每小题5分,共20分。13我国著名的数学家秦九韶在数书九章提出了“三斜求积术”他把三角形的三条边分别称为小斜、中斜和大斜三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,
4、所得的数作为“实”,1作为“隅”,开平方后即得面积所谓“实”、“隅”指的是在方程中,p为“隅”,q为“实”即若的大斜、中斜、小斜分别为a,b,c,则.已知点D是边AB上一点,则的面积为_14若函数的图像上存在点,满足约束条件,则实数的最大值为_15三所学校举行高三联考,三所学校参加联考的人数分别为160,240,400,为调查联考数学学科的成绩,现采用分层抽样的方法在这三所学校中抽取样本,若在学校抽取的数学成绩的份数为30,则抽取的样本容量为_.16函数的定义域为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G
5、在上,且满足,点G的轨迹为曲线C.(1)求曲线C的方程;(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.18(12分)已知()过点,且当时,函数取得最大值1.(1)将函数的图象向右平移个单位得到函数,求函数的表达式;(2)在(1)的条件下,函数,求在上的值域.19(12分)在极坐标系中,已知曲线,(1)求曲线、的直角坐标方程,并判断两曲线的形状;(2)若曲线、交于、两点,求两交点间的距离20(12分)设为抛物线的焦点,为抛物线上的两个动点,为坐标原点.()若点在线段上,求的最小值;()当时,求点纵坐标的取值范围.21(1
6、2分)已知函数(1)求f(x)的单调递增区间;(2)ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求ABC的面积.22(10分)如图,在矩形中,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.()求证:平面平面;()求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出【详解】如图:点为的三条中线的交点,由可得:,又因,.故选:B【点睛】本题考查三角形重心的定义及性质,向
7、量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.2、D【解析】根据频率分布直方图中频率小矩形的高组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)200.30,样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题3、A【解析】利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量
8、的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题4、C【解析】先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.5、C【解析】简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,考验分析能力,属中档题.6、A【解析】设椭圆的
9、半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.【详解】设椭圆的长半轴长为,双曲线的长半轴长为 ,由椭圆和双曲线的定义得: ,解得,设,在中,由余弦定理得: , 化简得,即.故选:A【点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.7、C【解析】求出的元素,再确定其真子集个数【详解】由,解得或,中有两个元素,因此它的真子集有3个故选:C.【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集8、A【解析】根据正弦定理可
10、得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,即,即,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.9、A【解析】先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.10、A【解析】由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图
11、像得出,即得出,从而得出的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.11、C【解析】通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.12、C【解析】假设若甲被录用了,若乙被录用了,若
12、丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求积术”公式即可求得答案.【详解】,所以,由余弦定理可知,得.根据“三斜求积术”可得,所以.【点睛】本题考查正切的和角公式,同角三角函数的基本关系式,余弦定理的应用,考查学生分析问题的能
13、力和计算整理能力,难度较易.14、1【解析】由题知x0,且满足约束条件的图象为由图可知当与交于点B(2,1),当直线过B点时,m取得最大值为1. 点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.15、【解析】某层抽取的人数等于该层的总人数乘以抽样比.【详解】设抽取的样本容量为x,由已知,解得.故答案为:【点睛】本题考查随机抽样中的分层抽样,考查学生基本的运算能力,是一道容易题.16、【解析】由题意得,
14、解得定义域为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意得到GB是线段的中垂线,从而为定值,根据椭圆定义可知点G的轨迹是以M,N为焦点的椭圆,即可求出曲线C的方程;(2)联立直线方程和椭圆方程,表示处的面积代入韦达定理化简即可求范围.【详解】(1)为的中点,且是线段的中垂线,又,点G的轨迹是以M,N为焦点的椭圆,设椭圆方程为(),则,所以曲线C的方程为.(2)设直线l:(),由消去y,可得.因为直线l总与椭圆C有且只有一个公共点,所以,.又由可得;同理可得.由原点O到直线的距离为和,可得.将代入得,当时,综上,面积的取值范围是.【点
15、睛】此题考查了轨迹和直线与曲线相交问题,轨迹通过已知条件找到几何关系从而判断轨迹,直线与曲线相交一般联立设而不求韦达定理进行求解即可,属于一般性题目.18、 (1);(2).【解析】试题分析:(1)由题意可得函数f(x)的解析式为,则.(2)整理函数h(x)的解析式可得:,结合函数的定义域可得函数的值域为.试题解析:(1)由函数取得最大值1,可得,函数过得,.(2) ,值域为.19、(1)表示一条直线,是圆心为,半径为的圆;(2).【解析】(1)直接利用极坐标方程与直角坐标方程之间的转换关系可将曲线的方程化为直角坐标方程,进而可判断出曲线的形状,在曲线的方程两边同时乘以得,由可将曲线的方程化为
16、直角坐标方程,由此可判断出曲线的形状;(2)由直线过圆的圆心,可得出为圆的一条直径,进而可得出.【详解】(1),则曲线的普通方程为,曲线表示一条直线;由,得,则曲线的直角坐标方程为,即所以,曲线是圆心为,半径为的圆;(2)由(1)知,点在直线上,直线过圆的圆心因此,是圆的直径,【点睛】本题考查曲线的极坐标方程与直角坐标方程之间的转化,同时也考查了直线截圆所得弦长的计算,考查计算能力,属于基础题.20、()()【解析】(1)由抛物线的性质,当轴时,最小;(2)设点,分别代入抛物线方程和得到三个方程,消去,得到关于的一元二次方程,利用判别式即可求出的范围.【详解】解:(1)由抛物线的标准方程,根据
17、抛物线的性质,当轴时,最小,最小值为,即为4.(2)由题意,设点,其中,.则,因为,所以.由,得,由,且,得,解不等式,得点纵坐标的范围为.【点睛】本题主要考查抛物线的方程和性质和二次方程的解的问题,考查运算能力,此类问题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等,易错点是复杂式子的变形能力不足,导致错解.21、(1)(2)【解析】(1)利用降次公式、辅助角公式化简解析式,根据三角函数单调区间的求法,求得的单调递增区间.(2)先由求得,利用正弦定理得到,结合余弦定理列方程,求得,由此求得三角形的面积.【详解】(1)函数,由,得.所以的单调递增区间为 .(2)因为且为锐角,所以.由及正弦定理可得,又,由余弦定理可得,解得, .【点睛】本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.22、()详见解析;().【解析】()根据,可得平面,故而平面平面()过作于,则可证平面,故为所求角,在中利用余弦定理计算,再计算【详解】解:()因为,平面,平面所以平面,又平面,所以平面平面;()过作于,则由平面,且平面知,所以平面,从而是直线与平面所成角.因为, 所以,从而.【点睛】本题考查了面面垂直的判定,考查直线与平面所成角的计算,属于中档题
限制150内