泸州市重点中学2022-2023学年高三下学期联合考试数学试题含解析.doc
《泸州市重点中学2022-2023学年高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《泸州市重点中学2022-2023学年高三下学期联合考试数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设正项等差数列的前项和为,且满足,则的最小值为A8B16C24D362已知正方体的棱长为1,平面与此正
2、方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是ABCD3某四棱锥的三视图如图所示,则该四棱锥的体积为( )ABCD4已知双曲线:,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为( )ABCD5已知平面向量,满足,且,则与的夹角为( )ABCD6设是定义域为的偶函数,且在单调递增,则( )ABCD7中,角的对边分别为,若,则的面积为( )ABCD8设集合,则集合ABCD9设,满足,则的取值范围是( )ABCD10胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形研究发现,该金字塔底面周长除以倍
3、的塔高,恰好为祖冲之发现的密率设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为ABCD11已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为 ABCD12已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13的展开式中,常数项为_;系数最大的项是_.14如图所示,平面BCC1B1平面ABC,ABC120,四边形BCC1B1为正方形,且ABBC2,则异面直线BC1与AC所成角的余弦值为_15戊戌年结束,己亥
4、年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_种(用数字作答),16在中,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)第十四届全国冬季运动会召开期间,某校举行了“冰上运动知识竞赛”,为了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求、的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取5人参加“普及冰雪知识”志愿活动,并指定
5、2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号分组频数频率第1组150.15第2组350.35第3组b0.20第4组20第5组100.1合计1.0018(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为(为参数).()求曲线C1和C2的极坐标方程:()设射线=(0)分别与曲线C1和C2相交于A,B两点,求|AB|的值19(12分)的内角,的对边分别为,已知的面积为.(1)求;(2)若,求的周长.20(12分)已知函数.()若是第二象限角,且,求的值;()求函数的定义域和值域.
6、21(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)设曲线与曲线相交于,两点,求的值.22(10分)在锐角三角形中,角的对边分别为已知成等差数列,成等比数列(1)求的值;(2)若的面积为求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,则,当且仅当时等号成立,从而的最小值为16,故选B方法二:设正项等差数列的公差为d,由等差数列的前项和
7、公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B2、B【解析】此题画出正方体模型即可快速判断m的取值.【详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.3、B【解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱
8、锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题4、D【解析】由|AF2|3|BF2|,可得.设直线l的方程xmy+,m0,设,即y13y2,联立直线l与曲线C,得y1+y2-,y1y2,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程xmy+,m0,双曲线的渐近线方程为x2y,m2,设A(x1,y1),B(x2,y2),且y10,由|AF2|3|BF2|,y13y2由,得(2m)24(m24)0,即m2+40恒成立,y1+y2,y1y2,联立得,联立得,即:,解得:,直线的斜率为,故选D【点睛】本题考查直线
9、与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题5、C【解析】根据, 两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且, 所以,所以,所以 ,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.6、C【解析】根据偶函数的性质,比较即可.【详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【点睛】本题考查对数的运算及偶函数的性质,是基础题.7、A【解析】先求出,由正弦定理求得,然后由面积公式计算【详解】由题意,由得,故选:A【点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 泸州市 重点中学 2022 2023 学年 下学 联合 考试 数学试题 解析
限制150内