《河北省保定市莲池区2023年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省保定市莲池区2023年中考数学押题试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1当x=1时,代数式x3+x+m的值是7,则当x=1时,这个代数式的值是()A7B3C1D72安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是()A3804.2103B380.42104C3.8042106
2、D3.80421053在平面直角坐标系中,已知点A(4,2),B(6,4),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是()A(2,1)B(8,4)C(8,4)或(8,4)D(2,1)或(2,1)4小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,则等于ABCD5如图,在矩形 ABCD 中,AB=2a,AD=a,矩形边上一动点 P 沿 ABCD 的路径移动设点 P 经过的路径长为 x,PD2=y,则下列能大致反映 y 与 x 的函数关系的图象是( )ABCD6下列计算正确的是( )A3a26a2=3B(2a)(a)=2a2C10a102a2=5a5D(a3)2=a6
3、7下列图形中,是中心对称图形但不是轴对称图形的是()ABCD8如图,ABC中,CAB=65,在同一平面内,将ABC绕点A旋转到AED的位置,使得DCAB,则BAE等于( )A30B40C50D609下列说法正确的是( )A负数没有倒数 B1的倒数是1C任何有理数都有倒数 D正数的倒数比自身小10如图,矩形ABCD中,E为DC的中点,AD:AB:2,CP:BP1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O下列结论:EP平分CEB;PBEF;PFEF2;EFEP4AOPO其中正确的是()ABCD11若分式方程无解,则a的值为()A0B-1C0或-1D1或-112在一组数据:1,
4、2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A中位数不变,方差不变B中位数变大,方差不变C中位数变小,方差变小D中位数不变,方差变小二、填空题:(本大题共6个小题,每小题4分,共24分)13已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_14按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为214.该返回舱的最高温度为_15如图放置的正方形,正方形,正方形,都是边长为的正方形,点在轴上,点,都在直线上,则的坐标是_,的坐标是_.16如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到
5、折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_17函数y=+的自变量x的取值范围是_18将一张长方形纸片折叠成如图所示的形状,则ABC=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)计算:(1)22sin45+(2018)0+|20(6分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.21(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选
6、一个,每个景点被选中的可能性相同(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率22(8分)如图,ABC中,CD是边AB上的高,且求证:ACDCBD;求ACB的大小23(8分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率24(10分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC求证:1=2;连结BE、DE,判断四边形BCDE的形状,并说明理由.25(10分)如图,PB与O相切于点B,过点B
7、作OP的垂线BA,垂足为C,交O于点A,连结PA,AO,AO的延长线交O于点E,与PB的延长线交于点D(1)求证:PA是O的切线;(2)若tanBAD=,且OC=4,求BD的长26(12分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为(1)当时,求四边形的面积;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标27(12分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的
8、飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B2、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】3804.2千=3804200,3804200=3.8042106;故选:C【点睛】本题考查科学记数法的表示方法科学记数法的表
9、示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案【详解】点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把ABO缩小,点A的对应点A的坐标是:(-2,1)或(2,-1)故选D【点睛】此题考查了位似图形与坐标的关系此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k4、C【解析】根据三角形的内角和定理和三角形外角性质进行解答即可【详解】如图:,
10、=,故选C【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.5、D【解析】解:(1)当0t2a时,AP=x,;(2)当2at3a时,CP=2a+ax=3ax,=;(3)当3at5a时,PD=2a+a+2ax=5ax,=y,=;综上,可得,能大致反映y与x的函数关系的图象是选项D中的图象故选D6、B【解析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a26a2=3a2,不正确;选项B,单项式乘单项式的运算可得(2a)(a)=2a2,正确;选项C,根据整式的除法可得10a102a2=5a8,不正确;
11、选项D,根据幂的乘方可得(a3)2=a6,不正确故答案选B考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式7、B【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误故选B【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、C【解析】试题分析:DCAB,DCA=CAB=65.ABC绕点A旋转到AED的位
12、置,BAE=CAD,AC=AD.ADC=DCA=65. CAD=180ADCDCA=50. BAE=50故选C考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质9、B【解析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、1的倒数是1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.10、B【解析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出EBC
13、的度数和CEP的度数,则CEP=BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论【详解】解:设AD=x,AB=2x四边形ABCD是矩形AD=BC,CD=AB,D=C=ABC=90DCABBC=x,CD=2xCP:BP=1:2CP=x,BP=xE为DC的中点,CE=CD=x,tanCEP=,tanEBC=CEP=30,EBC=30CEB=60PEB=30CEP=PEBEP平分CEB,故正确;DCAB,CEP=F=30,F=EBP=30,F=BEF=30,EBPEFB,BEBF=EFBPF=BEF,BE=BFPBEF,故正确F=30,PF=2PB=x,过点E作E
14、GAF于G,EGF=90,EF=2EG=2xPFEF=x2x=8x22AD2=2(x)2=6x2,PFEF2AD2,故错误.在RtECP中,CEP=30,EP=2PC=xtanPAB=PAB=30APB=60AOB=90在RtAOB和RtPOB中,由勾股定理得,AO=x,PO=x4AOPO=4xx=4x2又EFEP=2xx=4x2EFEP=4AOPO故正确故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键11、D【解析】试题分析:在方程两边同乘(x1)得:xa
15、a(x1),整理得:x(1a)2a,当1a0时,即a1,整式方程无解,当x10,即x1时,分式方程无解,把x1代入x(1a)2a得:(1a)2a,解得:a1,故选D点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件12、D【解析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断【详解】原数据的中位数是=3,平均数为=3,方差为(1-3)2+(2-3)2+(4-3)2+(5-3)2=;新数据的中位数为3,平均数为=3,方差为(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2;所以新数据与原数据相比中位数不变,方差变小,故选:D【点
16、睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义二、填空题:(本大题共6个小题,每小题4分,共24分)13、1.1【解析】【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论【详解】一组数据4,x,1,y,7,9的众数为1,x,y中至少有一个是1,一组数据4,x,1,y,7,9的平均数为6,(4+x+1+y+7+9)=6,x+y=11,x,y中一个是1,另一个是6,这组数为4,1,1,6,7,9,这组数据的中位数是(1+6)=1.1,故答案为:1.1【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一
17、个是1是解本题的关键.14、17【解析】根据返回舱的温度为214,可知最高温度为21+4;最低温度为21-4【详解】解:返回舱的最高温度为:21+4=25;返回舱的最低温度为:21-4=17;故答案为:17【点睛】本题考查正数和负数的意义4指的是比21高于4或低于415、 【解析】先求出OA的长度,然后利用含30的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可【详解】分别过点 作y轴的垂线交y轴于点,点B在上设 同理, 都是含30的直角三角形, 同理,点 的横坐标为 纵坐标为 故点的坐标为故答案为:;【点睛】本题主要考查含30的直角三角形的性质,找到点的坐标规律是解题的关键16、
18、3【解析】先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x在RtBEF中,由EB2=EF2+BF2,列出方程即可解决问题【详解】四边形ABCD是矩形,A=90AB=8,AD=6,BD1DEF是由DEA翻折得到,DF=AD=6,BF=2设AE=EF=x在RtBEF中,EB2=EF2+BF2,(8x)2=x2+22,解得:x=3,AE=3故答案为:3【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案17、x1且x3【解析】根据二次根式的有意义和分式
19、有意义的条件,列出不等式求解即可【详解】根据二次根式和分式有意义的条件可得: 解得:且 故答案为:且【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.18、73【解析】试题解析:CBD=34,CBE=180-CBD=146,ABC=ABE=CBE=73三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1【解析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果【详解】解:原式=11+1+=1+1+=1【点睛】此题考查了含有特殊角的三角函数值的运算,熟练
20、掌握各运算法则是解题的关键.20、【解析】过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知BAD=CAE=30,从而得出BD=2、CE=3,据此可得【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,房子后坡度AB与前坡度AC相等,BAD=CAE,BAC=120,BAD=CAE=30,在直角ABD中,AB=4米,BD=2米,在直角ACE中,AC=6米,CE=3米,a-b=1米【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念21、(1);(2)【解
21、析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案【详解】(1)小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,小明选择去白鹿原游玩的概率;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率22、(1)证明
22、见试题解析;(2)90【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明ACDCBD;(2)由(1)知ACDCBD,然后根据相似三角形的对应角相等可得:A=BCD,然后由A+ACD=90,可得:BCD+ACD=90,即ACB=90试题解析:(1)CD是边AB上的高,ADC=CDB=90,ACDCBD;(2)ACDCBD,A=BCD,在ACD中,ADC=90,A+ACD=90,BCD+ACD=90,即ACB=90 考点:相似三角形的判定与性质23、(1)P=;(2)P=.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件
23、的概率试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=; (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比24、
24、(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.【解析】(1)证明ADCABC后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可【详解】解:(1)证明:在ADC和ABC中,ADCABC(SSS).1=2.(2)四边形BCDE是菱形,理由如下:如答图,1=2,DC=BC,AC垂直平分BD.OE=OC,四边形DEBC是平行四边形.ACBD,四边形DEBC是菱形【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定25、(1)证明见解析;(2)【解析】试题分析:(1)连接OB,由SS
25、S证明PAOPBO,得出PAO=PBO=90即可;(2)连接BE,证明PACAOC,证出OC是ABE的中位线,由三角形中位线定理得出BE=2OC,由DBEDPO可求出试题解析:(1)连结OB,则OA=OB如图1,OPAB,AC=BC,OP是AB的垂直平分线,PA=PB在PAO和PBO中,PAOPBO(SSS),PBO=PAOPB为O的切线,B为切点,PBO=90,PAO=90,即PAOA,PA是O的切线;(2)连结BE如图2,在RtAOC中,tanBAD=tanCAO=,且OC=4,AC=1,则BC=1在RtAPO中,ACOP,PACAOC,AC2=OCPC,解得PC=9,OP=PC+OC=2
26、在RtPBC中,由勾股定理,得PB=,AC=BC,OA=OE,即OC为ABE的中位线OC=BE,OCBE,BE=2OC=3BEOP,DBEDPO,即,解得BD=26、(1)4;(2),;(3)【解析】(1)过点D作DEx轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;(2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;(3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从
27、而求出结论【详解】解:(1)过点D作DEx轴于点E当时,得到,顶点,DE=1由,得,;令,得;,OC=3(2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,由翻折得:,;,轴,由勾股定理得:,解得:(不符合题意,舍去),;,(3)原抛物线的顶点在直线上,直线交轴于点,如图2,过点作轴于,;由题意,平移后的新抛物线顶点为,解析式为,设点,则,过点作于,于,轴于,、分别平分,点在抛物线上,根据题意得:解得:【点睛】此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键27、CD的长度为1717cm【解析】在直角三角形中用三角函数求出FD,BE的长,而FCAEABBE,而CDFCFD,从而得到答案.【详解】解:由题意,在RtBEC中,E=90,EBC=60,BCE=30,tan30=,BE=ECtan30=51=17(cm);CF=AE=34+BE=(34+17)cm,在RtAFD中,FAD=45,FDA=45,DF=AF=EC=51cm,则CD=FCFD=34+1751=1717,答:CD的长度为1717cm【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.
限制150内