江苏省泰州市靖江实验校2022-2023学年中考数学五模试卷含解析.doc
《江苏省泰州市靖江实验校2022-2023学年中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州市靖江实验校2022-2023学年中考数学五模试卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S2018的值为()ABCD2如图所示,有一条线段是()的中线,该线段是( ).
2、 A线段GHB线段ADC线段AED线段AF3把a的根号外的a移到根号内得()ABCD4今年,我省启动了“关爱留守儿童工程”某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1对于这组数据,下列说法错误的是( )A平均数是15B众数是10C中位数是17D方差是 5如图,在ABC中,ABC=90,AB=8,BC=1若DE是ABC的中位线,延长DE交ABC的外角ACM的平分线于点F,则线段DF的长为( )A7B8C9D106如图,A、B、C、D是O上的四点,BD为O的直径,若四边形ABCO是平行四边形,则ADB的大
3、小为()A30B45C60D757已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A1一定不是关于x的方程x2+bx+a=0的根B0一定不是关于x的方程x2+bx+a=0的根C1和1都是关于x的方程x2+bx+a=0的根D1和1不都是关于x的方程x2+bx+a=0的根8已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A1B2C3D49的值是ABCD10如图是半径为2的半圆,点C是弧AB的中点,现将半圆如图方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )ABC2+D2二、填空题(本大题共6个小题,每小题3分,共18
4、分)11不等式组的解集是_12如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30,那么铁塔的高度AB=_米13如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_14如图,A、B是反比例函数y(k0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若SAOC1则k_15如图,四边形ABCD内接于O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F若EF80,则A_16如图,点A、B、C、D在O上,O点在D的内部,四边形OABC为平行四边形,则OAD+OC
5、D= .三、解答题(共8题,共72分)17(8分)解分式方程: -1=18(8分)如图,已知抛物线yax2+bx+1经过A(1,0),B(1,1)两点(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:yk1x+b1(k1,b1为常数,且k10),直线l2:yk2x+b2(k2,b2为常数,且k20),若l1l2,则k1k21解决问题:若直线y2x1与直线ymx+2互相垂直,则m的值是_;抛物线上是否存在点P,使得PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直
6、线AB的距离的最大值19(8分)如图,已知点C是以AB为直径的O上一点,CHAB于点H,过点B作O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G(1)求证:AEFD=AFEC;(2)求证:FC=FB;(3)若FB=FE=2,求O的半径r的长20(8分)已知是关于的方程的一个根,则_21(8分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DAAB于A,CBAB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?22(10分)已知,如图,是的平分
7、线,点在上,垂足分别是、.试说明:.23(12分)解方程:x24x5024在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(4,6)、(1,4);请在图中的网格平面内建立平面直角坐标系;请画出ABC关于x轴对称的A1B1C1;请在y轴上求作一点P,使PB1C的周长最小,并直接写出点P的坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据等腰直角三角形的性质可得出2S2S1,根据数的变化找出变化规律“Sn()n2”,依此规律即可得出结论【详解】如图所示,正方形ABCD的边长为2,CDE为等腰直角三角形,
8、DE2+CE2CD2,DECE,2S2S1观察,发现规律:S1224,S2S12,S2S21,S4S2,Sn()n2当n2018时,S2018()20182()3故选A【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn()n2”2、B【解析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得【详解】根据三角形中线的定义知:线段AD是ABC的中线故选B【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线3、C【解析】根据二次根式有意义的条件可得a0,原式变形为(a),然后利用二次根式的性质得到,
9、再把根号内化简即可【详解】解:0,a0,原式(a),故选C【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型4、C【解析】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确故选C【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.5、B【解析】根据三角形中位线定理求出DE,得到DFBM,再证明EC=EF=AC,由此即可解决问题【详解】在RTABC中,ABC=90,AB=2,BC=1,AC=10,DE是ABC的中位线,DFBM,DE=BC=3,EFC=FCM,FCE=FCM,EFC=ECF,EC=EF=AC=5,
10、DF=DE+EF=3+5=2故选B6、A【解析】解:四边形ABCO是平行四边形,且OA=OC,四边形ABCO是菱形,AB=OA=OB,OAB是等边三角形,AOB=60,BD是O的直径,点B、D、O在同一直线上,ADB=AOB=30故选A7、D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根再结合a+1-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根【详解】关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,b=a+1或b=-(
11、a+1)当b=a+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根a+10,a+1-(a+1),1和-1不都是关于x的方程x2+bx+a=0的根故选D【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当=0时,方程有两个相等的实数根”是解题的关键8、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 泰州市 靖江 实验 2022 2023 学年 中考 数学 试卷 解析
限制150内