江西省抚州市临川二中2023年高三最后一卷数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《江西省抚州市临川二中2023年高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省抚州市临川二中2023年高三最后一卷数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,角的对边分别为,若,则的形状为( )A直角三角形B等腰非等边三角形C等腰或直角三角形D钝角三角形2已知是虚数单位,则( )ABCD3已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值
2、为( )ABCD4定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )ABCD以上情况均有可能5某几何体的三视图如图所示,则此几何体的体积为( )AB1CD6已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为( )ABCD7已知集合(),若集合,且对任意的,存在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD8祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是
3、的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9设向量,满足,则的取值范围是ABCD10设f(x)是定义在R上的偶函数,且在(0,+)单调递减,则( )ABCD11根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u= lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是( )AeBe2Cln2D2ln212设,满足约束条件,则的最大值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若函数 (R,)满足,且的最小值等于,则的值为_.14已知抛物线的焦点为,斜率为的直线过且与抛物线交于两
4、点,为坐标原点,若在第一象限,那么_15已知的展开式中含有的项的系数是,则展开式中各项系数和为_.16在中,点是边的中点,则_,_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲设函数.(1)当时,求不等式的解集;(2)若在上恒成立,求实数的取值范围.18(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为()求椭圆的离心率;()如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程19(12分)已知双曲线及直线.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是原点,且,求实数k的值.20(12
5、分)已知数列满足(1)求数列的通项公式;(2)设数列的前项和为,证明:21(12分)已知椭圆:(),四点,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.22(10分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面与平面所成二面角的正弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【详解】解:因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角
6、形或直角三角形故选:【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题2、B【解析】根据复数的乘法运算法则,直接计算,即可得出结果.【详解】.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.3、B【解析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.4、B【解析】由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较【详解
7、】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,故选:【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键5、C【解析】该几何体为三棱锥,其直观图如图所示,体积故选.6、B【解析】根据三角函数定义得到,故,再利用和差公式得到答案.【详解】角的终边过点,.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.7、C【解析】根据题目中的基底定义求解.【详解】因为,所以能作为集合的基底,故选:C【点睛】本题主要考查集合的新定义,还考查了理解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省 抚州市 临川二中 2023 年高 最后 一卷 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内