《浙江省温州市八校联考2023年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州市八校联考2023年中考数学猜题卷含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在O中,直径AB弦CD,垂足为M,则下列结论一定正确的是( )AAC=CDBOM=BMCA=A
2、CDDA=BOD2下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A B C D3如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:ACB;乙的路线为:ADEFB,其中E为AB的中点;丙的路线为:AIJKB,其中J在AB上,且AJJB若符号表示直线前进,则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为()A甲=乙=丙B甲乙丙C乙丙甲D丙乙甲4如图,点O为平面直角坐标系的原点,点A在x轴上,OAB是边长为4的等边三角形,以O为旋转中心,将OAB按顺时针方向旋转60,得到OAB,那么点A的坐标为()A(2,2)B(2,4)C(2,2)
3、D(2,2)5下列四个不等式组中,解集在数轴上表示如图所示的是()ABCD6若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()ABCD7如图,平行四边形ABCD的顶点A、B、D在O上,顶点C在O直径BE上,连结AE,若E=36,则ADC的度数是( )A44B53C72D548下面四个几何体: 其中,俯视图是四边形的几何体个数是()A1B2C3D49在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为A60B120C60或120D30或12010在1、1、3、2这四个数中,最大的数是()A1B1C3D211将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的
4、函数表达式是( )ABCD12根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8107B880108C8.8109D8.81010二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,AB,AC分别为O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_14如图,直线l1l2l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,FAC与DF相交于点H,且AH=2,HB=1,BC
5、=5,则的值为 15如图所示,把一张长方形纸片沿折叠后,点分别落在点的位置若,则等于_16已知关于x的方程x22x+n=1没有实数根,那么|2n|1n|的化简结果是_17抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为_18某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图,在ABC中,AB=BC,ABC=90,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC(1)
6、求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形20(6分)如图,半圆O的直径AB5cm,点M在AB上且AM1cm,点P是半圆O上的动点,过点B作BQPM交PM(或PM的延长线)于点Q设PMxcm,BQycm(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm11.522.533.54y/cm03.7_3.83.32.5_(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数
7、图象,解决问题:当BQ与直径AB所夹的锐角为60时,PM的长度约为_cm21(6分)在平面直角坐标系中,ABC的顶点坐标是A(2,3),B(4,1), C(2,0)点P(m,n)为ABC内一点,平移ABC得到A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处(1)画出A1B1C1(2)将ABC绕坐标点C逆时针旋转90得到A2B2C,画出A2B2C;(3)在(2)的条件下求BC扫过的面积22(8分)在如图的正方形网格中,每一个小正方形的边长均为 1格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(2,0),(3,3)(1)请在图中的网格平面内建立平面直角坐标系,
8、写出点 B 的坐标;(2)把ABC 绕坐标原点 O 顺时针旋转 90得到A1B1C1,画出A1B1C1,写出点B1的坐标;(3)以坐标原点 O 为位似中心,相似比为 2,把A1B1C1 放大为原来的 2 倍,得到A2B2C2 画出A2B2C2,使它与AB1C1 在位似中心的同侧;请在 x 轴上求作一点 P,使PBB1 的周长最小,并写出点 P 的坐标23(8分)如图,矩形ABCD绕点C顺时针旋转90后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;(1)求证:AM=FM;(2)若AMD=a求证:=cos24(10分)已知:关于x的一元二次方程kx2(4k+1)x+3k+30(k是整数
9、)(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值25(10分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O连接OA、OB、OC、ODOE是边CD的中线,且AOB+COD180(1)如图2,当ABO是等边三角形时,求证:OEAB;(2)如图3,当ABO是直角三角形时,且AOB90,求证:OEAB;(3)如图4,当ABO是任意三角形时,设OAD,OBC,试探究、之间存在的数量关系?结论“OEAB”还成立吗?若成立,请你证明;若不成立,请说明理由26(12分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升某校计划购进A,B两种树木共100棵进行校园
10、绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元(1)求A种,B种树木每棵各多少元; (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用27(12分)已知关于x的一元二次方程为常数求证:不论m为何值,该方程总有两个不相等的实数根;若该方程一个根为5,求m的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合
11、题目要求的)1、D【解析】根据垂径定理判断即可【详解】连接DA直径AB弦CD,垂足为M,CM=MD,CAB=DAB2DAB=BOD,CAD=BOD故选D【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键2、C【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.3、A【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似而且图2三角形全等,图3三角形相似详解:根据以上分析:所以图2可得AE=BE,
12、AD=EF,DE=BE AE=BE=AB,AD=EF=AC,DE=BE=BC,甲=乙 图3与图1中,三个三角形相似,所以 = AJ+BJ=AB,AI+JK=AC,IJ+BK=BC, 甲=丙甲=乙=丙 故选A 点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系4、D【解析】分析:作BCx轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A与点B重合,于是可得点A的坐标详解:作BCx轴于C,如图,OAB是边长为4的等边三角形 A点坐标为(4,0),O点坐标为(
13、0,0),在RtBOC中, B点坐标为 OAB按顺时针方向旋转,得到OAB, 点A与点B重合,即点A的坐标为 故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.5、D【解析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案【详解】由解集在数轴上的表示可知,该不等式组为,故选D【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键6、D【解析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3
14、倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变此题比较简单,但计算时一定要细心7、D【解析】根据直径所对的圆周角为直角可得BAE=90,再根据直角三角形的性质和平行四边形的性质可得解.【详解】根据直径所对的圆周角为直角可得BAE=90,根据E=36可得B=54,根据平行四边形的性质可得ADC=B=54.故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.8、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B考点:简单几何体的三视图9、C【解析】根
15、据题意画出相应的图形,由ODAB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在RtAOD中,利用锐角三角函数定义及特殊角的三角函数值求出AOD的度数,进而确定出AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数【详解】如图所示,ODAB,D为AB的中点,即AD=BD=,在RtAOD中,OA=5,AD=,sinAOD=,又AOD为锐角,AOD=60,AOB=120,ACB=AOB=60,又圆内接四边形AEBC对角互补,AEB=120,则此弦所对的圆周角为60或120故选C【点睛】此题考查了垂径定理,圆周角定理,特殊角的
16、三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键10、C【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:根据有理数比较大小的方法,可得-2-111,在1、-1、1、-2这四个数中,最大的数是1故选C【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小11、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位
17、,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,代入得:y=(x+1)1-1所得图象的解析式为:y=(x+1)1-1;故选:B【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标12、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】880亿=880 0000 0000=8.81010,故选D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的
18、形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题:(本大题共6个小题,每小题4分,共24分)13、12【解析】连接AO,BO,CO,如图所示:AB、AC分别为O的内接正六边形、内接正方形的一边,AOB=60,AOC=90,BOC=30,n=12,故答案为12.14、【解析】试题解析:AH=2,HB=1,AB=AH+BH=3,l1l2l3,考点:平行线分线段成比例15、50【解析】先根据平行线的性质得出DEF的度数,再根据翻折变换的性质得出DEF的度数,根据平角的定义即可得出结论【详解】ADBC,EFB=65,DEF=65,又DEF=DEF,DEF=65,AED=
19、50.【点睛】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.16、1【解析】根据根与系数的关系得出b2-4ac=(-2)2-41(n-1)=-4n+80,求出n2,再去绝对值符号,即可得出答案【详解】解:关于x的方程x22x+n=1没有实数根,b2-4ac=(-2)2-41(n-1)=-4n+80,n2,|2n |-1-n=n-2-n+1=-1.故答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.17、【解析】根据概率的计算方法求解即可.【详解】第4次抛掷一枚均匀的硬币时,正面和反面朝上
20、的概率相等,第4次正面朝上的概率为.故答案为:.【点睛】此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=18、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,增长用+,
21、减少用-但要注意解的取舍,及每一次增长的基础三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析 (2)见解析【解析】(1)由三角形中位线知识可得DFBG,GHBF,根据菱形的判定的判定可得四边形FBGH是菱形;(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解【详解】(1)点F、G是边AC的三等分点,AF=FG=GC又点D是边AB的中点,DHBG同理:EHBF四边形FBGH是平行四边形,连
22、结BH,交AC于点O,OF=OG,AO=CO,AB=BC,BHFG,四边形FBGH是菱形;(2)四边形FBGH是平行四边形,BO=HO,FO=GO又AF=FG=GC,AF+FO=GC+GO,即:AO=CO四边形ABCH是平行四边形ACBH,AB=BC,四边形ABCH是正方形【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键20、(1)4,1;(2)见解析;(3)1.1或3.2【解析】(1)当x=2时,PMAB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1(2)利用描点法画出函数图象即可;(3)根据直角三角形31度角的
23、性质,求出y=2,观察图象写出对应的x的值即可;【详解】(1)当x2时,PMAB,此时Q与M重合,BQBM4,当x4时,点P与B重合,此时BQ1故答案为4,1(2)函数图象如图所示:(3)如图,在RtBQM中,Q91,MBQ61,BMQ31,BQBM2,观察图象可知y2时,对应的x的值为1.1或3.2故答案为1.1或3.2【点睛】本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.21、(1)见解析;(2)见解析;(3).【解析】(1)根据P(m,n)移到P(m+6,n+1)可知ABC向右平移6个单位,向上平移了一个单位
24、,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形即可;(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.【详解】解:(1)平移ABC得到A1B1C1,点P(m,n)移到P(m+6,n+1)处,ABC向右平移6个单位,向上平移了一个单位,A1(4,4),B1(2,0),C1(8,1);顺次连接A1,B1,C1三点得到所求的A1B1C1(2)如图所示:A2B2C即为所求三角形.(3)BC的长为: BC扫过的面积【点睛】本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、
25、(1)(4,1);(2)(1,4);(3)见解析;(4)P(3,0)【解析】(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出A2B2C2;(4)作点B关于x轴的对称点B,连接BB1,交x轴于点P,则点P即为所求.【详解】解:(1)如图所示,点B的坐标为(4,1);(2)如图,A1B1C1即为所求,点B1的坐标(1,4);(3)如图,A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B,连接BB1,交x轴于点P,则点P即为所求,P(3,0)【点睛】本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称
26、,旋转的意义.23、(1)见解析;(2)见解析.【解析】(1)由旋转性质可知:AD=FG,DC=CG,可得CGD=45,可求FGH=FHG=45,则HF=FG=AD,所以可证ADMMHF,结论可得(2)作FNDG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cos=cosFMG=,代入可证结论成立【详解】(1)由旋转性质可知:CD=CG且DCG=90,DGC=45从而DGF=45,EFG=90,HF=FG=AD又由旋转可知,ADEF,DAM=HFM,又DMA=HMF,ADMFHMAM=FM(2)作FNDG垂足为NADMMFHDM=MH,AM
27、=MF=AFFH=FG,FNHGHN=NGDG=DM+HM+HN+NG=2(MH+HN)MN=DGcosFMG=cosAMD=cos【点睛】本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形24、(3)证明见解析(3)3或3【解析】(3)根据一元二次方程的定义得k2,再计算判别式得到(3k3)3,然后根据非负数的性质,即k的取值得到2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.【详解】证明:(3)=(4k+3)34k(3k+3)=(3k3)3k为整数,(3k3)32,即2方程有两个不相等的实数根(3)解:方
28、程kx3(4k+3)x+3k+3=2为一元二次方程,k2kx3(4k+3)x+3k+3=2,即kx(k+3)(x3)=2,x3=3,方程的两个实数根都是整数,且k为整数,k=3或3【点睛】本题主要考查了根的判别式的知识,熟知一元二次方程的根与的关系是解答此题的关键.25、(1)详见解析;(2)详见解析;(3)+90;成立,理由详见解析【解析】(1)作OHAB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明OCEOBH,根据全等三角形的性质证明;(2)证明OCDOBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;(3)根据等腰三角形的性质、三角形内角和定理计算;延
29、长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明【详解】(1)作OHAB于H,AD、BC的垂直平分线相交于点O,OD=OA,OB=OC,ABO是等边三角形,OD=OC,AOB=60,AOB+COD180COD=120,OE是边CD的中线,OECD,OCE=30,OA=OB,OHAB,BOH=30,BH=AB,在OCE和BOH中,OCEOBH,OE=BH,OE=AB;(2)AOB=90,AOB+COD=180,COD=90,在OCD和OBA中, ,OCDOBA,AB=CD,COD=90,OE是边CD的中线,OE=CD,OE=AB;(3)OAD=,O
30、A=OD,AOD=1802,同理,BOC=1802,AOB+COD=180,AOD+COB=180,1802+1802=180,整理得,+=90;延长OE至F,使EF=OE,连接FD、FC,则四边形FDOC是平行四边形, OCF+COD=180,AOB=FCO,在FCO和AOB中,FCOAOB,FO=AB,OE=FO=AB【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键26、 (1) A种树每棵2元,B种树每棵80元;(2) 当购买A种树木1棵
31、,B种树木25棵时,所需费用最少,最少为8550元【解析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答【详解】解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得 ,解得 ,答:A种树木每棵2元,B种树木每棵80元(2)设购买A种树木x棵,则B种树木(2x)棵,则x3(2x)解得x1又2x0,解得x21x2设实际付款总额是y元,则y0.92x80(2x)即y18x7 3180,y随x增大而增大,当x1时,y最小为1817 38 550(元)答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元27、(1)详见解析;(2)的值为3或1【解析】(1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.【详解】证明:原方程可化为,不论m为何值,该方程总有两个不相等的实数根解:将代入原方程,得:,解得:,的值为3或1【点睛】本题考查了参数对一元二次方程根的影响.中等难度关键是将根据不同情况讨论参数的取值范围.
限制150内