《河北省张家口市蔚县重点名校2023届中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省张家口市蔚县重点名校2023届中考三模数学试题含解析.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1今年,我省启动了“关爱留守儿童工程”某村
2、小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1对于这组数据,下列说法错误的是( )A平均数是15B众数是10C中位数是17D方差是 2如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO2,OB1,BC2,则下列结论正确的是( )ABCD3某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )A94分,96分B96分,96分C94分,96.4分D96分,96.4分4如图,已知ABC的三个顶点均在格点上,则cos
3、A的值为( )ABCD5如图,甲从A点出发向北偏东70方向走到点B,乙从点A出发向南偏西15方向走到点C,则BAC的度数是()A85B105C125D1606已知:如图,在ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若AGC的周长为31cm,AB=20cm,则ABC的周长为()A31cmB41cmC51cmD61cm7据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A3.386108B0.3386109C33.86107D3.3861098在ABC中,C90,那么B的
4、度数为( )A60B45C30D30或609边长相等的正三角形和正六边形的面积之比为( )A13B23C16D110“射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件二、填空题(共7小题,每小题3分,满分21分)11一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_12如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲
5、家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_米13圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_14一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为_.15如果实数x、y满足方程组,求代数式(+2)16已知关于x的方程x2mx40有两个相等的实数根,则实数m的值是_17因式分解=_三
6、、解答题(共7小题,满分69分)18(10分)在ABC中,ABAC,以AB为直径的O交AC于点E,交BC于点D,P为AC延长线上一点,且PBCBAC,连接DE,BE(1)求证:BP是O的切线;(2)若sinPBC,AB10,求BP的长19(5分) (1)计算:3tan30+|2|+()1(3)0(1)2018.(2)先化简,再求值:(x),其中x=,y=1.20(8分)先化简,再求值:(x+1y)1(1y+x)(1yx)1x1,其中x+1,y121(10分)如图,在ABC中,AB=AC,点P、D分别是BC、AC边上的点,且APD=B,求证:ACCD=CPBP;若AB=10,BC=12,当PDA
7、B时,求BP的长22(10分)已知:如图,.求证:.23(12分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图根据图中信息求出m= ,n= ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事
8、物不一样的概率24(14分)解方程组: 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确故选C【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.2、C【解析】根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.【详解】解:AO2,OB1,BC2,a2,b1,c3,|a|c|,ab0,故选:C【点睛】此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.3、D【解析】解:总人数为610%=60(人),则91分的有6020%=12(人), 98分
9、的有60-6-12-15-9=18(人), 第30与31个数据都是96分,这些职工成绩的中位数是(96+96)2=96; 这些职工成绩的平均数是(926+9112+9615+9818+1009)60 =(552+1128+1110+1761+900)60 =578160 =96.1 故选D【点睛】本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键4、D【解析】过B点作BDAC,如图,由勾股定理得,AB=,AD=,cosA=,故选D5、C【解析】首先求得AB与正东方向的夹角的度数,即可求解【详解】根据题意得:BAC(9070)+15+90125,故选:C【
10、点睛】本题考查了方向角,正确理解方向角的定义是关键6、C【解析】DG是AB边的垂直平分线,GA=GB,AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,ABC的周长=AC+BC+AB=51cm,故选C.7、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:数字338 600 000用科学记数法可简洁表示为3.386108故选:A【点睛】本题考查科学记数法表示较大的数8、C【解析】根据特殊角的三角函
11、数值可知A=60,再根据直角三角形中两锐角互余求出B的值即可.【详解】解:,A=60.C90,B=90-60=30.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.9、C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a过A作ADBC于D,则BAD=30,AD=ABcos30=1a=a,SABC=BCAD=1aa=a1连接OA、OB,过O作ODABAOB=20,AOD=30,OD=OBcos30=1a=a,SABO=BAOD=1aa=a1,正六边形的面积为:2a1, 边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:
12、2故选C点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键10、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值【详解】解:根据题意得1%,解得n1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球故答案为1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理
13、,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率12、5200【解析】设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得: 解得 所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息13、15p【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧
14、长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=235=15故答案为15考点:圆锥的计算14、2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长详解:解方程x2-10x+21=0得x1=3、x2=1,3第三边的边长9,第三边的边长为1这个三角形的周长是3+6+1=2故答案为2点睛:本题考查了解一元二次方程和三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和15、1【解析】解:原式=xy+2x+2y,方程组:,解得:,当x=3,y=1时,原式=3+62=1故答案为1点睛:此题考查了分式的化
15、简求值,熟练掌握运算法则是解本题的关键16、4【解析】分析:由方程有两个相等的实数根,得到根的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值详解:方程有两个相等的实数根, 解得: 故答案为点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.17、【解析】解:=,故答案为:三、解答题(共7小题,满分69分)18、(1)证明见解析;(2) 【解析】(1)连接AD,求出PBCABC,求出ABP90,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相
16、似三角形的性质和判定求出BP即可【详解】解:(1)连接AD,AB是O的直径,ADB=90,ADBC,AB=AC,AD平分BAC,BAD=BAC,ADB=90,BAD+ABD=90,PBC=BAC,PBC+ABD=90,ABP=90,即ABBP,PB是O的切线;(2)PBC=BAD,sinPBC=sinBAD,sinPBC=,AB=10,BD=2,由勾股定理得:AD=4,BC=2BD=4,由三角形面积公式得:ADBC=BEAC,44=BE10,BE=8,在RtABE中,由勾股定理得:AE=6,BAE=BAP,AEB=ABP=90,ABEAPB,=,PB=【点睛】本题考查了切线的判定、圆周角定理、
17、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键19、 (1)3;(2) xy,1【解析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】(1)3tan30+|2-|+()-1-(3-)0-(-1)2018=3+2-+3-1-1,=+2+3-1-1,=3;(2)(x),=,=x-y,当x=,y=-1时,原式=+1=1【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们
18、各自的计算方法20、2【解析】【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.【详解】原式=x1+2xy+2y1(2y1x1)1x1=x1+2xy+2y12y1+x11x1=2xy,当x=+1,y=1时,原式=2(+1)(1)=2(32)=2【点睛】本题考查了整式的混合运算化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.21、(1)证明见解析;(2). 【解析】(2)易证APD=B=C,从而可证到ABPPCD,即可得到,即ABCD=CPBP,由AB=AC即可得到ACCD=CPBP;(2)由PDAB可得APD=BAP,即可得到BAP=C,
19、从而可证到BAPBCA,然后运用相似三角形的性质即可求出BP的长解:(1)AB=AC,B=CAPD=B,APD=B=CAPC=BAP+B,APC=APD+DPC,BAP=DPC,ABPPCD,ABCD=CPBPAB=AC,ACCD=CPBP;(2)PDAB,APD=BAPAPD=C,BAP=CB=B,BAPBCA,AB=10,BC=12,BP=“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明ACCD=CPBP转化为证明ABCD=CPBP是解决第(1)小题的关键,证到BAP=C进而得到BAPBCA是解决第(2)小题的关键22、见解析【解
20、析】先通过BAD=CAE得出BAC=DAE,从而证明ABCADE,得到BC=DE【详解】证明:BAD=CAE,BAD+DAC=CAE+DAC即BAC=DAE,在ABC和ADE中,,ABCADE(SAS)BC=DE【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL23、(1)100、35;(2)补图见解析;(3)800人;(4) 【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(
21、3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得详解:(1)被调查的总人数m=1010%=100人,支付宝的人数所占百分比n%=100%=35%,即n=35,(2)网购人数为10015%=15人,微信对应的百分比为100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为200040%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比24、【解析】方程组整理后,利用加减消元法求出解即可【详解】解:方程组整理得: +得:9x=-45,即x=-5,把x=-代入得: 解得:则原方程组的解为【点睛】本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法
限制150内